ZKX's LAB

数学分几大类 抛物型方程数值解c 代码

2021-03-08知识4

微分方程数值解这门课讲的啥 微分方程数值解这门课程包括常微分方程初值问题的差分格式的构造和性态分析,椭圆型方程的差分方法,抛物型方程的差分方法,双曲型方程的差分方法。学完本课程后可掌握求解微分方程数值解的基本方法,能够根据具体的微分方程选用合适的计算方法。要求学习过数学分析、高等代数或线性代数、常微分方程,面向对象是数学系、信息与计算科学专业三四年级本科生。

如何从物理意义上理解NS方程? 希望有大神能形象的用通俗易懂的方法描述一下NS方程的对流项,扩散项,源项等。是否对于不同的项需要使用…

偏微分方程数值解讲义的目录

数学分几大类 数学分26大类:1、数学史2、数理逻辑与数学基础:演绎逻辑学(也称符号逻辑学),证明论(也称元数学),递归论,模型论,公理集合论,数学基础,数理逻辑与数学基础其他。

数学分几大类 抛物型方程数值解c 代码

抛物型偏微分方程数值解怎么给出第三类边界条件 沿外法线的导数与边界内外函数值之差成正比dy/dn=k(y-f)

数学分几大类 数学分26大类:1、数2113学史2、数理逻辑5261与数学基础:演绎逻辑学(也4102称符号逻辑学),证1653明论(也称元数学),递归论,模型论,公理集合论,数学基础,数理逻辑与数学基础其他学科。3、数论:初等数论,解析数论,代数数论,超越数论,丢番图逼近,数的几何,概率数论,计算数论,数论其他学科。4、代数学:线性代数,群论,域论,李群,李代数,Kac-Moody代数,环论(包括交换环与交换代数,结合环与结合代数,非结合环与非结合代数等),模论,格论,泛代数理论,范畴论,同调代数,代数K理论,微分代数,代数编码理论,代数学其他学科。5、代数几何学6、几何学:几何学基础,欧氏几何学,非欧几何学(包括黎曼几何学等),球面几何学,向量和张量分析,仿射几何学,射影几何学,微分几何学,分数维几何,计算几何学,几何学其他学科。7、拓扑学:点集拓扑学,代数拓扑学,同伦论,低维拓扑学,同调论,维数论,格上拓扑学,纤维丛论,几何拓扑学,奇点理论,微分拓扑学,拓扑学其他学科。8、数学分析:微分学,积分学,级数论,数学分析其他学科。9、非标准分析10、函数论:实变函数论,单复变函数论,多复变函数论,函数逼近论,调和分析,复流形。

#抛物型方程数值解c 代码

随机阅读

qrcode
访问手机版