ZKX's LAB

偏微分方程解的存在唯一性吗? 一维抛物型偏微分方程程序

2021-03-08知识18

用谱方法解含时偏微分方程时,边界条件是怎样起作用的? 考虑[-1,1]上的一维扩散方程将函数用切比雪夫多项式展开,并取截断:方程的残差是不妨取Chebyshev Gauss-…

帮忙求解以下偏微分方程(急) 好难的,没学。

偏微分方程解的存在唯一性吗? 一维抛物型偏微分方程程序

急求!!! 大学数学,用matlab解决问题,题目是一维抛物型偏微分方程差分解法

急求!!! 大学数学,用matlab解决问题,题目是一维抛物型偏微分方程差分解法 显式前向欧拉法源程序:function[u,x,t]=EF_Euler(A,xf,T,it0,bx0,bxf,M,N)解方程 A u_xx=u_t,0,0初值:u(x,0)=it0(x)边界条件:u(0,t)=bx0(t),u(xf,t)=bxf(t)M:x 轴的等分段数N:t 轴的等分段数dx=xf/M;x=[0:M]*dx;dt=T/N;t=[0:N]'*dt;for i=1:M+1u(i,1)=it0(x(i));endfor j=1:N+1u([1 M+1],j)=[bx0(t(j));bxf(t(j))];endr=A*dt/dx/dx,r1=1-2*r;if(r>;0.5)disp('r>;0.5,unstability');endfor j=1:Nfor i=2:Mu(i,j+1)=r*(u(i+1,j)+u(i-1,j))+r1*u(i,j);(9.2.3)endendu=u';在MATLAB中编写脚本文件:A=0.5;方程系数it0=inline('sin(pi*x)','x');初始条件bx0=inline('0');bxf=inline('0');边界条件xf=2;M=80;T=0.1;N=100;[u1,x,t]=EF_Euler(A,xf,T,it0,bx0,bxf,M,N);figure(1),clf,mesh(u1)xlabel('x')ylabel('t')zlabel('U')title('r>;0.5')M=50;[u1,x,t]=EF_Euler(A,xf,T,it0,bx0,bxf,M,N);figure(2),clf,mesh(u1)xlabel('x')ylabel('t')zlabel('U')title('r)隐式后向欧拉法源程序:function[u,x,t]=IB_Euler(A,xf,T,it0,bx0,bxf,M,N)解方程 A1 u_xx=u_t,0,0初值:u(x,0)=it0(x)边界条件:u(0,t)=bx0(t),u(xf,t)=bxf(t)M:x 轴的。

您好 我想请问一个一维热传导的偏微分的方程差分格式 能否帮忙?

抛物型偏微分方程的格林函数 基本解是点热源的影响函数。如果在t=0时刻在(ξ,η,ζ)处给定单位点热源,即u0(x,y,z,0)=δ(ξ,η,ζ)(δ是狄喇克函数),则当t>;0时由它引起的在全空间

偏微分方程数值解讲义的目录 第1章 椭圆型偏微分方程的差分方法1.1 引言1.2 模型问题的差分逼近1.3 一般问题的差分逼近1.3.1 网格、网格函数及其范数1.3.2 差分格式的构造1.3.3 截断误差、相容性、稳定性与收敛性1.3.4 边界条件的处理1.4 基于最大值原理的误差分析1.4.1 最大值原理与差分方程解的存在唯一性1.4.2 比较定理与差分方程的稳定性和误差估计1.5 渐近误差分析与外推1.6 补充与注记习题1第2章 抛物型偏微分方程的差分方法2.1 引言2.2 模型问题及其差分逼近2.2.1 模型问题的显式格式及其稳定性和收敛性2.2.2 模型问题的隐式格式及其稳定性和收敛性2.3 一维抛物型偏微分方程的差分逼近2.3.1 直接差分离散化方法2.3.2 基于半离散化方法的差分格式2.3.3 一般边界条件的处理2.3.4 耗散与守恒性质2.4 高维抛物型偏微分方程的差分逼近2.4.1 高维盒形区域上的显式格式和隐式格式2.4.2 二维和三维交替方向隐式格式及局部一维格式2.4.3 更一般的高维抛物型问题的差分逼近2.5 补充与注记习题2第3章 双曲型偏微分方程的差分方法3.1 引言3.2 一维一阶线性双曲型偏微分方程的差分方法3.2.1 特征线与CFL条件3.2.2 迎风格式3.2.3 15ax-Wendroff格式和Beam-Warming。

椭圆型偏微分方程、抛物型偏微分方程、双曲型偏微分方程分别对应什么物理意义? 椭圆型偏微分方程:二维平面稳定场方程,如稳定浓度分布,稳定温度分布,静电场方程,无旋稳恒电流场方程,无旋稳恒流动方程等抛物型偏微分方程:一维输运方程,如扩散方程,热传导方程等双曲型偏微分方程:一维波动方程,如弦振动方程,杆振动方程,电报方程等它们是分别描述二维平面稳定场,一维输运,一维波动问题的方程

#一维抛物型偏微分方程程序

随机阅读

qrcode
访问手机版