卡诺循环中,第一个过程跟第三个过程功的变化是一样的,第二个过程和第四个过程内能的变化也一样,对不? 卡诺循环包括四个步骤:等温膨胀,在这个过程中系统从环境中吸收热量;绝热膨胀,在这个过程中系统对环境作功;等温压缩,在这个过程中系统向环境中放出热量;绝热压缩,系统恢复原来状态,在这个过程中系统对环境作负功。这四个过程都是不一样的。
卡诺循环和熵有什么关系 设想有两个热源,一个卡诺循环从第一62616964757a686964616fe4b893e5b19e31333231396336个热源中抽取一定量的热Q',相应的温度为T和T',则:现在设想一个任意热机的循环,在系统中从N个热源中交换一系列的热Q1,Q2.QN,并有相应的温度T1,T2,.TN,设系统接受的热为正量,系统放出的热为负量,可以知道:如果循环向反方向运行,公式依然成立。求证,我们为有N个热源的卡诺循环中引入一个有任意温度T0的附加热源,如果从T0热源中,通过j次循环,向Tj热源输送热Qj,从定义绝对温度的式中可以得出,从T0热源通过j次循环输送的热为:现在我们考虑任意热机中N个卡诺循环中的一个循环,在循环过程结束时,在T1,.,TN个热源中,每个热源都没有纯热损失,因为热机抽取的每一份热都被循环过程弥补回来。所以结果是(i)热机作出一定量的功,(ii)从T0 热源中抽取总量为下式的热:如果这个热量是正值,这个过程就成为第二类永动机,这是违反热力学第二定律的,所以正如下式所列:只有当热机是可逆的时,式两边才能相等,上式自变量可以一直重复循环下去。要注意的是,我们用Tj 代表系统接触的温度,而不是系统本身的温度。如果循环不是可逆的,热量总是从高温向低温处流动。所以:。
关于熵的计算 即使是这样一个错误一切轰隆倒下:心里不再孤单我活着就因为从属于它这点生机。她和先前判若两人…一个暗处的少女他一个这个行走在这条后路中哈哈
怎样读温熵图? 卡诺循环复在温熵图中是一个制矩形,两水bai平线代表可逆等温过du程(不可逆zhi过程在图上画不出来dao),曲线下面积为两过程的吸热量(上方曲线的围成面积为正,代表吸热,下方曲线的围成面积为负,代表放热)。可逆过程的吸热量dQ=TdS,对于可逆等温,T为常量积分时可提出积分号,故Q=T(S2-S1),可见就是线下面积。两垂直线为可逆等熵过程,也就是可逆绝热过程。很明显单独的一条线不能围成面积,故过程无热效应。可逆绝热过程中,每一微小步骤都没有吸热或放热,因此在绝热线上的任意两点间的熵差都是零。故可逆绝热过程就是可逆等熵过程。但不可逆绝热过程熵要变化(总是增大,称为熵增原理)矩形的面积(为正),代表一个循环中总的吸热量。由于一个循环后系统恢复到起点,即状态不变,故内能不变,说明系统在一个循环中将净的吸热量(矩形面积)转化为对外做功,功的量也是该矩形面积。利用温熵图,可以非常方便地求可逆过程中的热量。循环中的功也容易计算。利用该图求效率,比p-V图方便多了。等熵时温度增加或减少代表着什么?答:代表可逆绝热过程中温度升高啊,升高有什么后果用绝热过程方程就知道了啊
非气体卡诺循环的熵变不等于0对吗? 熵是状态函数,循环就是回到原状态,当然为零
卡诺循环得到了热为什么系统熵变为零