ZKX's LAB

胡明复的主要成就 沃尔泰拉积分方程

2021-03-08知识6

研究沃尔泰拉积分方程有什么意义 1、数学分层的体系为:在班级内部以学生在数学学习能力上的差异来分层,针对不同层次的学生设计不同的教学目标要求,设置分层教学、分层训练、分层辅导、分层评价等体系,分层培养学生旨在提高学生数学成绩。2、数学分层教学的实施以学生间存在的客观差异性为基础,将学生按照同质或异质原则进行分层,在数学教学目标的制定、教学过程的实施、教学效果的评价中,对学生都以层次来对待。3、数学分层教学的指导思想是以学生的发展为宗旨,关注学生在数学学生上的差异。具体而言,教师首先要充分了解班级学生数学知识基础、学习能力和学习效率,学生客观存在的知识基础、智力因素及非智力因素的差异程度,在此基础上,将班级学生设置为三个层次,根据不同层次进行区别对待。教师可以根据不同层次学生的客观实际条件,分层确定教学目标,进而实施教材统一、进度统一而要求有别的教学。4、数学分层教学模式是教学过程中的有效教学模式,可以针对不同层次学生的学习需求,设定不同层次的教学目标。教师通过采用分层的教学方法,使数学处于较高水平的学生达到更加优秀的层次,使那些知识水平处于较低层次的学生获得较大的发展。总而言之,实施分层教学的终极目标就是让学生在原有的。

数学体系是怎样分布的?

积分方程的新面貌 自抽象空间这个概念创立以来,如希尔伯特空间、巴拿赫空间以及算子理论的建立,使古典的积分方程以崭新的面貌出现。例如,把积分方程(3)中出现的函数看作是巴拿赫空间X的元素,原来的积分运算以算子T代替,于是方程(3)就可写为(8)这里T是巴拿赫空间X中的一个全连续算子,ψ是X中一个已知元素,而φ是X中的未知元素。方程(8)的齐次方程φ-λTφ=0,若对于某些λ值有不等于零元素的解,则称这些λ值为算子T的点谱,相应的元素称为特征元素。对于方程(8)也有在巴拿赫空间X中类似的弗雷德霍姆定理。算子T的谱分解是重要的研究课题,J.冯·诺伊曼在这方面有丰硕的研究成果。积分方程有广泛的应用。微分方程某些定解问题的求解可归结为求解积分方程。例如,为求解常微分方程初值问题,y(x0)=y0,y′(x0)=y1,只要在微分方程两端积分两次,并交换积分次序和利用初始条件,就得到与之等价的沃尔泰拉积分方程类似地,对于常微分方程的边值问题也可得到与之等价的弗雷德霍姆积分方程。又如,偏微分方程中拉普拉斯方程的狄利克雷问题和诺伊曼问题,可分别利用双层位势和单层位势作为中介而归结为第二种弗雷德霍姆积分方程的求解,而且是等价的。粘性流体力学问题中的维纳-斯托克斯方程的定解。

胡明复的主要成就 沃尔泰拉积分方程

#沃尔泰拉积分方程

随机阅读

qrcode
访问手机版