用于数据挖掘的聚类算法有哪些,各有何优势
用SPSS 20 做两阶段聚类
如何使用SPSS进行二阶聚类
聚类分析法 聚类分析,亦称群分析或点分析,是研究多要素事物分类问题的数量方法。其基本原理是,根据样本自身的属性,用数学方法按照某些相似性或差异性指标,定量地确定样本之间的亲疏关系,并按亲疏关系的程度对样本进行聚类(徐建华,1994)。聚类分析方法,应用在地下水中,是在各种指标和质量级别标准约束条件下,通过样品的各项指标监测值综合聚类,以判别地下水质量的级别。常见的聚类分析方法有系统聚类法、模糊聚类法和灰色聚类法等。(一)系统聚类法系统聚类法的主要步骤有:数据标准化、相似性统计量计算和聚类。1.数据标准化在聚类分析中,聚类要素的选择是十分重要的,它直接影响分类结果的准确性和可靠性。在地下水质量研究中,被聚类的对象常常是多个要素构成的。不同要素的数据差异可能很大,这会对分类结果产生影响。因此当分类要素的对象确定之后,在进行聚类分析之前,首先对聚类要素进行数据标准化处理。假设把所考虑的水质分析点(G)作为聚类对象(有m个),用i表示(i=1,2,…,m);把影响水质的主要因素作为聚类指标(有n个),用j表示(j=1,2,…,n),它们所对应的要素数据可用表4-3给出。在聚类分析中,聚类要素的数据标准化的方法较多,。
数据挖掘中的聚类算法聚成几类是人为设定还是自动的?用SOM神经网络做聚类是不是就是人为设定好聚几类? 看了之前的回答,都不专业聚类分析是一种无指导的分析,如果理解聚类的核心含义,你就能明白,聚类的数量是没有标准的,必须人为设定,但是特殊的聚类方法可以给你一些参考,比如:系统聚类,它可以生成聚类树,这样你就能直观判断分成几类合适。再比如:二阶聚类,系统模型会自动选择分成几类(如果不人为设定)。聚类是无指导的训练样本,分类是有指导的训练样本,分类就是通过已知的样本建立分类规则,来预测新样本的分类,为什么是有指导的?因为分类是用样本的其它属性来解释、预测我们感兴趣的属性的模型,这是白话。举例:我们知道一批用户的人口统计变量、消费、工资和贷款还款情况,现在我们要用用户的人口统计变量、消费、工资来对用户的贷款还款情况进行预测,这就是分类模型,在这里要用到分类决策树。就是说我们用样本的其它属性来对样本的贷款还款情况建立分类规则,然后对未来的新样本进行预测,判断新用户是否是理想的放贷对象