做决策是时候是不是也可以运用数学知识?那个是叫期望吗? 是可以的,也确实是叫期望。但是实际上,我们做决策的时候不能完全依赖于数据。还有很多外部因素要考虑。我是觉着做决策,在数据的参考之下,还要多听取其他人的经验和建议,多遵循自己的内心。这样的决策才能让你一往无前不会后悔。
什么是数学期望?如何计算? 数学期望是2113试验中每次5261可能结果的4102概率乘以其结果的总1653和。计算公式:1、离专散型:离散型随机变属量X的取值为X1、X2、X3…Xn,p(X1)、p(X2)、p(X3)…p(Xn)、为X对应取值的概率,可理解为数据X1、X2、X3…Xn出现的频率高f(Xi),则:2、连续型:设连续性随机变量X的概率密度函数为f(x),若积分绝对收敛,则称积分的值为随机变量的数学期望,记为E(X)。即扩展资料例题:在10件产品中,有3件一等品,4件二等品,3件三等品。从这10件产品中任取3件,求:(1)取出的3件产品中一等品件数x的分布列和数学期望;(2)取出的3件产品中一等品件数多于二等品件数的概率。解:x的数学期望E(x)=0*7/24+1*21/40+2*7/40+3*1/120=9/10参考资料来源:-数学期望
数学期望在经济决策中有哪些应用 数学期望的常用性质:1.设X是随机变量,C是常数,则E(CX)=CE(X)2.设X,Y是任意两个随机变量,则有E(X+Y)=E(X)+E(Y).3.设X,Y是相互独立的随机变量,则有E(XY)=E(X)E(Y)在统计学中,当估算一个变量的期望值时,一个经常用到的方法是重复测量此变量的值,然后用所得数据的平均值来作为此变量的期望值的估计。在概率分布中,期望值和方差或标准差是一种分布的重要特征。
E(X2)等于什么? 有关数学期望 ^记D(x)为该数据的方差,E(x)为期望,则2113D(x)=E(x^2)-[E(x)]^2,这样就可以把5261E(X2)求出来,或者直接用定义法求4102也可以。数学期望是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。期望值是基础概率学的升级版,是所有管理决策的过程中,尤其是在金融领域是最实用的统计工具。某个事件(最初用来描述买彩票)的期望值即收益,实际上就是所有不同结果的和,其中每个结果都是由各自的概率和收益相乘而来。扩展资料离散型随机变量数学期望的内涵:在概率论和统计学中,离散型随机变量的一切可能的取值xi与对应的概率P(=xi)之积的和称为数学期望(设级数绝对收敛),记为1653E(x)。数学期望又称期望或均值,其含义实际上是随机变量的平均值,是随机变量最基本的数学特征之一。但期望的严格定义是∑xi*pi绝对收敛,注意是绝对,也就是说这和平常理解的平均值是有区别的。一个随机变量可以有平均值或中位数,但其期望不一定存在。参考资料来源:—数学期望
均值和数学期望是什么?怎么区分 均值和数学期望没有区别。在概率论以及统计学中,数学期望或均值,亦简称期望,是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一,反映了随机变量平均。
数学期望就是平均值吗?
数学期望就是平均值吗? 数学期望不是平均值。21131、期望是个确定的数,是5261根据概率分布得到4102的。不管进不进行实验,1653期望都可以求出来。数学期望,又称为均值,即\"随机变量取值的平均值\"之意,这个平均是指以概率为权的加权平均。2、平均数(mean),是做多次实验之后,总和的平均数。扩展资料:数学期望的应用1、经济决策假设某一超市出售的某种商品,每周的需求量X在10至30范围内等可能取值,该商品的进货量也在10至30范围内等可能取值(每周只进一次货)超市每销售一单位商品可获利500元,若供大于求,则削价处理,每处理一单位商品亏损100元。若供不应求,可从其他超市调拨,此时超市商品可获利300元。试计算进货量多少时,超市可获得最佳利润?并求出最大利润的期望值。分析:由于该商品的需求量(销售量)X是一个随机变量,它在区间[10,30]上均匀分布,而销售该商品的利润值Y也是随机变量,它是X的函数,称为随机变量的函数。题中所涉及的最佳利润只能是利润的数学期望(即平均利润的最大值)。因此,本问题的解算过程是先确定Y与X的函数关系,再求出Y的期望E(Y)。最后利用极值法求出E(Y)的极大值点及最大值。2、体育比赛问题乒乓球是我们的国球,上世纪兵兵球也为。
“数学期望”是什么意思? 数学期望(mean)是最基本的数学特征之一,运用于概率论和统计学中,它是每个可能结果的概率乘以32313133353236313431303231363533e78988e69d8331333431366363其结果的总和。它反映了随机变量的平均值。需要注意的是,期望并不一定等同于常识中的“期望”—“期望”未必等于每一个结果。期望值是变量输出值的平均值。期望不一定包含在变量的输出值集合中。大数定律规定,当重复次数接近无穷大时,数值的算术平均值几乎肯定会收敛到期望值。扩展资料:应用:1、经济决策假设超市销售某一商品,周需求x的取值范围为10-30,商品的采购量取值范围为10-30。超市每售出一件商品可获利500元。如果供过于求,就会降价,每加工一件商品就要亏损10元。0元;如果供过于求,可以从其他超市转手。此时,超市商品可获利300元。超市在计算进货量时,能得到最大的利润吗?得到最大利润的期望值。分析:由于商品的需求(销售量)x是一个随机变量,它在区间[10,30]上均匀分布,而商品的销售利润值y也是一个随机变量。它是x的函数,称为随机变量函数。问题涉及的最佳利润只能是利润的数学期望(即平均利润的最大值)。因此,求解该问题的过程是确定y与x之间的函数关系,然后求出y的。
利用期望值准则进行决策 当最大概率为0.8,最小概率为0.2时,选择大规模开发 PDC公司是一家房地产开发公司,现有几个不同的开发方案:(1)小规模开发:60层,30个单位。(2)中等规模开发:12层、60。
英语翻译 Random variable is the mathematical expectation value for the characterization of the average location or centralized location,random variable mathematical expectation,also known as X probability P to the right of the weighted average.So mathematical expectation of economic decision-making is an important basis for decision-making.By calculating all decision-making programs mathematical expectation value of the gains or losses can quickly make a decision.Decision program is the largest of mathematical expectation of the program as the best option to decision-making.Know if any one program in each Bi natural conditions(factors)of the Qi,Bi implementation plan arising from the profit value ai,and the natural conditions of the probability Pi,The program is all profit expectations:ai*Pi options in the expected profit Select the largest profit expectations for the best option.Through the introduction of Matrix operations described in mathematical expectation greatest expectations,。