为什么热传导方程是抛物型,波动方程是双曲型的?定义里没有t这个变量应该怎么看啊?
热传导方程为何是抛物型方程
一阶线性偏微分方程都是抛物型的吗?书上讲二阶偏微的分类如下:二阶偏微分方程的一般形式为 A*Uxx+2*B*Uxy+C*Uyy+D*Ux+E*Uy+F*U=0 其特征方程为 A*(dy)^2-2*B*dx*dy+C*(dx)^2=0 若在某域内B^2-A*C0则在此域内称为双曲形方程 如此,一阶偏微的A=B=C=0,则B^2-A*C=0,一阶偏微必为抛物型?
一阶线性偏微分方程都是抛物型的吗?书上讲二阶偏微的分类如下:二阶偏微分方程的一般。
椭圆型偏微分方程、抛物型偏微分方程、双曲型偏微分方程分别对应什么物理意义? 椭圆型偏微分方程:二维平面稳定场方程,如稳定浓度分布,稳定温度分布,静电场方程,无旋稳恒电流场方程,无旋稳恒流动方程等抛物型偏微分方程:一维输运方程,如扩散方程,热传导方程等双曲型偏微分方程:一维波动方程,如弦振动方程,杆振动方程,电报方程等它们是分别描述二维平面稳定场,一维输运,一维波动问题的方程
2阶多自变量偏微分方程的分类除了椭圆,抛物,双曲,请问何为超双曲型和广义抛物型方程,请给出明确的定义.主要说明3自变量的情况即可,