FLAC3D的本构模型 FLAC 3D中包括11种材料本构模型:1.空单元模型(开挖模型)2.三种弹性模型(各向同性、正交各向异性和横向各向同性)3.七种塑性模型(Drucker-Prager模型、摩尔-库伦模型、。
数值法在岩土工程中有很大局限性,其局限性能否突破? 数值模拟在土木工程别的方向屡试不爽,可是岩土方面有很大局限性,此局限性能否克服?
摩尔—库仑本构模型 在FLAC3D中内置了11种材料模型:零模型、各向同性弹性模型、正交各向异性弹性模型、横观各向同性弹性模型、德鲁克 普拉格(Drucker-Prager)模型、摩尔 库仑塑性模型、节理化塑性模型、应变硬化/软化莫尔 库仑模型、双线性应变硬化/软化的节理化塑性模型、双屈服塑性模型及修正的剑桥黏土模型。每种模型对应一种特殊类型的岩土材料的本构特征。摩尔 库仑塑性模型适用于那些在剪应力下屈服,但剪应力只取决于最大、最小主应力,而第二应力对屈服不起作用的材料。对岩土材料,摩尔 库仑塑性模型最适用于常规工程。本次计算选择摩尔 库仑弹塑性本构模型,模型的破坏包络线联合了摩尔—库仑准则(剪切屈服函数)与拉强破坏(拉应力屈服函数)。包络线上应力点的位置受剪破坏流动法则与张破坏法则控制。4.3.3.1 增量弹性法则弹塑性体可产生弹性及塑性变形,依据虎克定律(Hooke'slaw),应力-应变的关系为:Δ[σ]=[E]Δ[ε](4-50)式中:[E]为刚度矩阵。对于弹性变形,应力增量为:煤层开采顶板导水裂隙带高度预测理论与方法式中:α1=K+(4/3)G;α2=K-(2/3)G;G为剪切模量;K为体积模量。(4-51)式还可写成:煤层开采顶板导水裂隙带高度预测理论与方法4.3.3.2 破坏准则与流动法则。
FLAC/FLAC3D基础与工程实例的目录 前言第1章FIAC/FIAC3D的功能与特性1.1FIAC/FIAC3D简介1.2FIAC/FIAC3D的主要特点1.2.1FIAC/FIAC3D的使用特征1.2.2FIAC/FIAC3D的计算特征1.2.3FIAC/FIAC3D的求解流程1.3FIAC/FIAC3D的应用范围1.4FIAC/FIAC3D的不足第2章FIAC3D快速入门2.1初识FIAC3D2.1.1图形界面2.1.2分析的基本组成部分2.1.3简单分析命令概要2.1.4文件类型2.1.5结果输出2.2简单示例2.3收敛标准2.3.1常用收敛标准2.3.2自定义收敛标准2.4求解过程中有关变量的解释2.4.1不平衡力2.4.2网格节点速度2.4.3塑性区标识2.4.4历时曲线2.5本章小结第3章FIAC快速入门3.1概述3.1.1使用界面介绍3.1.2网格和节点3.1.3修改程序内存3.2一个简单的实例3.2.1问题描述3.2.2启动FIAC3.2.3建立网格3.2.4定义材料3.2.5定义边界条件3.2.6重力设置3.2.7初始应力计算3.2.8保存状态文件3.2.9查看初始应力计算结果3.2.10查看最大不平衡力3.2.I1实施开挖3.2.12设置历史变量3.2.13开挖计算并保存3.2.14后处理3.3文件系统3.4功能模块介绍3.4.1BuiId选项卡—建立网格3.4.2AIter选项卡—修改网格3。
FLAC3D5.0模型及输入参数说明 最低0.27元开通文库会员,查看完整内容>;原发布者:xxf577798854231.1模型参数代码可参考manual中各个章节的command命令及说明,注意单位。用prop赋值。1.1.1各向同性弹性模型1.1.2横向同行弹性模型1.1.3正交各向异性弹性模型1.1.4德鲁克-普拉格模型1.1.5摩尔-库伦模型1.1.6多节理模型1.1.7应变硬化/软化模型1.1.8双线性应变硬化/软化多节理模型1.1.9D-Y模型1.1.10修正剑桥模型1.1.11纯动力学模型1.1.12经典粘弹性模型1.1.13粘弹性模型1.1.14二分幂律模型1.1.15蠕变模型1.1.16Burger、蠕变组合材料模型1.1.17幂律模型1.1.18粘塑形模型1.1.19碎盐变形模型1.1.20均质流体模型1.1.21各向异性流体模型1.1.22均质热导模型1.2模型适用说明遍布节理模型适用于Mohr-Coulomb材料来明确显示力在各个方向上的差异性。双线性软化应变遍布节理模型综合了软化应变Mohr-Coulomb模型和遍布节理模型,这种模型包含面向矩阵和遍布节理的一个双线性断裂点集。改进的Cam-clay模型反映了形变度和抗破坏能力对体积变化的影响。Mohr-Coulomb模型最适用于一般工程研究,同时,Mohr-Coulomb的内聚力和摩擦角参数相对于地质工程材料的其它属性,更容易获得。软化应变和遍布节理塑性模型实际上是Mohr-。