ZKX's LAB

二阶导数大于零 一阶导数等于0 为极小值点当一阶导数等于零而二阶导数小于零时为极大值点 搞不懂 二阶导大于0说明是极小值

2021-03-06知识8

为什么二阶导函数大于零取极小值 为什么二阶导函数大于零函数取极小值?解析:(1)“二阶导函数大于零函数取极小值”此结论从何而来?反例:y=x2(x∈R+)y'=2xy''=2>;0但是,。

当一阶导数等于零,而二阶导数大于零 时,为极小值点;当一阶导数等于零,而二阶导数小于零时,为极大值点 当一阶导数等于0时,这个点(设为A点)就是极点,1)若此时二阶导数大于0,说明一阶导数在A点连续且递增,那么当xA时,一阶导数大于0.,原函数递增.A点又是极点,所以此时,A为极小值点.2)当此时二阶导数小于0时,推理的方法一样

为什么判断极值的时候,二阶导数大于0是极小值点,前提一定要一阶导数为0?

首先明确,在某一范围内,导数大于 0,则此函数在这个范围内是增函数.函数的2阶导数大于0,说明其1阶导数在这个范围内为增函数.而求极值时,1阶导数为0,说明这个导数增函数是从小于0 到 大于0 单调增加.用实际的函数坐标.

二阶导数大于零 一阶导数等于0 为极小值点当一阶导数等于零而二阶导数小于零时为极大值点 搞不懂 当一阶导数等2113于0时,这个点(设为A点)就是极点,1)若此时5261二阶导数大于0,说明一阶4102导数在A点连续且递增,那么当xA时1653,一阶导数大于0.,原函数递增.A点又是极点,所以此时,A为极小值点.2)当此时二阶导数小于0时,推理的方法一样

二阶导数大于零 一阶导数等于0 为极小值点当一阶导数等于零而二阶导数小于零时为极大值点 搞不懂 二阶导大于0说明是极小值

为什么判断极值的时候,二阶导数大于0是极小值点 二阶倒数大于0说明一阶导数递增,当一阶导数为0,原函数先减后增,所以二阶导数小于0是极小值

请问fx的二阶导数恒大于0,可以说明该函数只存在极小值吗?

为什么二阶导函数大于零取极小值

为什么判断极值的时候,二阶导数大于0是极小值点 确实是描述起来有点麻烦,我来试着解答一下:先画一个 函数图像,比如 y=x^2 的偶函数。我们知道,导数其实就是变化率的意思。在物理中的意义就是速度(速率),在函数图像中的意义就是切线,这个切线和X轴平行的时候,定位变化率为0,就是导数=0,和X轴在第一象限的角度越大,变化率就越大,导数就越大,你可以想象成逆时针旋转的切线和导数成正比。如果理解了上面的话,后面就好办了,现在你想象一下用切线做一个滑板,沿着上面的图像从左到右滑动一遍,你会发现这个切线在逆时针旋转,这说明函数y=x^2的一阶导数是递增的。从图上也很容易看到,驻点(即反弯点,一阶导数=0处)就是函数的极小值点。那么现在我们来说二阶导数,二阶导数反映的是一阶导数的变化率,如同一阶导数相对于原函数。此时,如果二阶导数在某一点>;0,说明他相对的一阶导数在该点上从左到右是一个递增的状态,再回到上一段话,如果 一阶导数是递增的,那驻点就是极小值点。总结:二阶导数用来 判断一阶导数的变化率,二阶导数>;0时,一阶导数递增。(这个是函数的单调性定理)一阶导数递增,则驻点是极小值点。(仔细观察图像)以上函数用数学的方式来解答:f(x)=x^2f'(x)=2x令 f'(x)=0。

#二阶导大于0说明是极小值

qrcode
访问手机版