怎么求空间中两直线的最短距离 两点间距离公式再多加一个Z轴坐标就是了
空间中,两条异面直线的距离怎样求 最低0.27元/天开通文库会员,可在文库查看完整内容>;原发布者:暗夜伏特加如何求异面直线的距离 求异面直线距离方法:(1)(直接法)当公垂线段直接能作出时,直接求。此时,作出并证明异面直线的公垂线段,是求异面直线距离的关键。(2)(转化法)把线线距离转化为线面距离,如求异面直线a,b距离,先作出过a且平行于b的平面α,则b与α距离就是a,b距离。(线面转化法)也可以转化为过a平行b的平面和过b且平行于a的平面,两平行平面的距离就是两条异面直线距离。(3)(体积桥法)利用线面距再转化为锥体的高用体积公式来求。(4)(构造函数法)常常利用距离最短原理构造二次函数,利用求二次函数最值来解。两条异面直线间距离问题,教学大纲中要求不高(要求会计算已给出公垂线时的距离),这方面的问题的其它解法,要适度接触,以开阔思路。典型题目分析 正方体ABCD-A1B1C1D1棱长为a,求异面直线AC与BC1的距离。解法1:(直接法)取BC的中点P,连结PD,PB1分别交AC,BC1于M,N点,易证:DB1/MN,DB1⊥AC,DB1⊥BC1,∴MN为异面直线AC与BC1的公垂线段,易证:MN=B1D=a。(如图1所示)小结:此法也称定义法,这种解法是作出异面直线的公垂线段来解。解法2:。
求空间两平行直线的距离 求空2113间内两平行直线距离的关5261键在于将其转化为4102求空间内点到直线1653的距离,然后专套用公式步骤如下:对两属平行空间直线L1:(x-x0)/X=(y-y0)/Y=(z-z0)/L2:(x-x1)/X=(y-y1)/Y=(z-z1)/令x=x0,y=y0,z=z0得到点M1(x0,y0,z0)同理得点M2(x1,x2,x3),并做方向向量v=(X,Y,Z)因为两直线平行,所以两直线间距离d等于点M1到直线L2的距离。d=|向量v×向量M1M2|/|向量v|(((y0-y1)Z-(z0-z1)Y)+((x0-x1)Y-(y0-y1)X)+((x0-x1)Z-(z0-z1)X))/√(X2+Y2+Z2)拓展资料:常用的线距离是指直线间的距离,关于直线间的线距离定义为:两条不相交的直线间的线距离是指,两条不相交的直线间的最短距离。这个最短距离为这两条直线间的公用垂直线段的距离。平面几何中的线距离是指两条平行线间的距离。参考资料:线间距—
空间中两异面直线距离公式 一堆答非所问的直线2113L1的方向向5261量为s1,L2的方向向量为s2,点4102A在直线L1上,点B在直线L2上,d=|[s1 s2 AB]|/|s1 x s2|[s1 s2 AB]为混合积1653s1 x s2为向量积
如何求到空间两直线距离和最短的空间点坐标
已知两点经纬度和高度,如何求两点的空间直线距离? 设地球半径为R,地bai心为0,球du面上两点A、zhiB的球面坐标为A(αdao1,β1),B(α2,β2),α1、α内2∈[-π,π],β1、β容2∈[-π/2,π/2],AB=R?arccos[cosβ1cosβ2cos(α1-α2)+sinβ1sinβ2]利用勾股定理与正弦定理则可求出AB两点间的直线距离,