函数在定义域内具有单调性是什么意思? 有单调性就是 要么单增 要么单减
怎么理解函数在定义域内单调 函数在定义域内单调:指的是该函数在整个定义域内随着自变量x的增大,函数值要么一直增大,要么一直减小(即要么是单调增函数,要么单调减函数)对于函数Y=X(X不能等于零),可以说是单调的;
能否说正切函数在其定义域内是单调增函数? 1,单调递增只是针对单个连zhidao续区间而言的,所以,“y=tanx在其定义域内单调递增”是不准确的。2,“y=tanx在其定义域内单调递增”固然不准确,但是,又找不到比此描述内更好的。3,可行的描述如下:y=tanx的定义域由无数个诸如(2kπ-π/2,2kπ+π/2)之类的区间组容成,其在每个区间上单调递增。4,偶上学时向数学老师请教过此问题,未果。
函数fx在定义域上是单调函数是什么意思 单调函数是指2113,对于整个定5261义域而言,函数具有单调4102性。而不是针对定义域的子1653区间而言。举个例子,反比例函数是一个具有单调性的函数,而不是一个单调函数,因为在反比例函数的定义域上,并不呈现整体的单调性。单调函数只是单调性函数中特殊的一种。区间具有单调性的函数并不一定是单调函数,而单调函数的子区间上一定具有单调性。如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1>;x2时都有f(x1)≥f(x2),那么就说在这个区间上是增函数(另一说法为单调不减函数)。如果f(x1)>;f(x2),那么就说在这个区间上是严格增函数(另一种说法是增函数)。如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1>;x2时都有f(x1)≤f(x2).那么就是f(x)在这个区间上是减函数(另一种说法为单调不增函数)。如果f(x1)(x2),那么就说f(x)在这个区间上是严格减函数(另一种说法是减函数)。
函数在定义域内不单调是什么意思? 意思就是有增函数也有减函数 相当于在二次函数图像最 低/高 点两侧各取一点所成的区域就不单调