1.y2=2px型抛物线中为什么y1乘y2等于-p方?请证明. 你说的是一种特殊情况:“过抛物线y2=2px的焦点(p/2,0)的直线与抛物线交于点(x2,y2)和(x1,y1),则y1*y2=-p2”设过点(p/2,0)的直线为 y=k(x-p/2)解得x=(2y+pk)2k代入解析式整理得ky2-2py-p2k=0由根和系数的关系得y1*y2=-p2显然,这个关系式只在这种情况下才成立.
什么是变系数微分方程 https://pic.wenwen.soso.com/p/20180604/20180604132700-1870506048_png_565_211_8525.jpg\"/>;
抛物线的最低点或最高点的公式是什么? 抛物线的最低点或最高点的公式是:[-b/2a,(4ac-b*b)/4a]这是开口向上向下都通用的!对称轴为x轴时,方程右端为±2px,方程的左端为y^2;对称轴为y轴时,方程的右端为±2py,方程的左端为x^2。开口方向与x轴(或y轴)的正半轴相同时,焦点在x轴(y轴)的正半轴上,方程的右端取正号;开口方向与x(或y轴)的负半轴相同时,焦点在x轴(或y轴)的负半轴上,方程的右端取负号。扩展资料:抛物线是平面内到一定点和到一条不过此点的定直线的距离相等的点的轨迹。这一定点叫做抛物线的焦点,定直线叫做抛物线的准线。过焦点弦的端点A、B作准线的垂线,垂足分别为M、N。设A、B处的切线相交于P,则P是MN中点,并且以AB为直径的圆切准线于P。若抛物线的两条焦点弦相等,连接这两条焦点弦的中点,则连线与轴垂直。抛物线的一条弦AB与轴相交于P(不一定是焦点F),过A、B分别作轴的垂线AM、BN,抛物线顶点为O,则OP2=AM*BN。
抛物线面积公式
△在数学题中是什么意思,怎么读 1△表示三角形符号,读作三角形2△叫二次方程的判别式,读作“德尔塔|“计算:△=b^2-4*a*c(a、b、c 分别为方程二次项、一次项和常数项系数)作用:在一元二次方程中判定实。
二次函数的性质 1.抛物线是轴对称图形.对称轴为直线x=-b/2a.对称轴与抛物线唯一的交点为抛物线的顶点P.特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上.3.二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a时,抛物线向下开口.|a|越大,则抛物线的开口越小.4.一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab),对称轴在y轴右.5.常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c)6.抛物线与x轴交点个数 Δ=b^2-4ac>0时,抛物线与x轴有2个交点.Δ=b^2-4ac=0时,抛物线与x轴有1个交点.Δ=b^2-4ac时,抛物线与x轴没有交点.X的取值是虚数(x=-b±b^2-4ac 乘上虚数i,整个式子除以2a)当a>;0时,函数在x=-b/2a处取得最小值f(-b/2a)=4ac-b^2/4a;在{x|x-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2/4a}相反不变 当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2+c(a≠0)7.定义域:R 值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷。
抛物线型解 当T和w均不2113随空间位置变化时,式(2.1)可改写5261为地下水4102运动1653方程还可以改写为用水力梯度表示的方程:地下水运动方程容易得到这个线性常微分方程的通解为地下水运动方程式中:C1为待定常数。把水力梯度与水头的关系式(1.2)代入式(2.6)得到:地下水运动方程这也是一个线性常微分方程,其通解为地下水运动方程式中:C2为另一个待定常数。式(2.8)说明水头分布线为一条抛物线,但当w=0时变化为直线。为了确定C1和C2,我们需要考虑边界条件。下面按照不同的边界类型进行求解。(1)A、B均为定水头边界。在这种情况下,将边界条件改写为地下水运动方程把边界条件代入通解(2.8),得到地下水运动方程将式(2.10)代入式(2.8)得到地下水运动方程(2)A为定水头边界,B为定流量边界(二类边界)。这种情况下,边界A的方程不变,边界B的方程变为地下水运动方程式中:IB表示单侧水力梯度,以流出研究区为正。把式(2.12)代入式(2.7)得地下水运动方程而C2仍然为HA。将C1和C2代入式(2.8)得到定解问题的解为地下水运动方程(3)A为第三类边界,B为定流量边界。这种情况下,边界B的方程仍然为式(2.12),但边界A的方程变为。