为什么随机变量的“数学期望”E(X)是常数(大学数学) 根据数学期望的定义(离散型、连续型两种)可以知道,随机变量的数学期望仅依赖于这个随机变量的分布,当随机变量的概率分布确定以后,这个随机变量的数学期望就是确定的。
数学期望的计算 E(X-3)^3=E(X^3-3x^2+9X-27)=E(X^3)-3E(X^2)+9E(X)-27=∫x^3 f(x)dx-3∫x^2 f(x)dx+9∫xf(x)dx-27
E(X2)等于什么? 有关数学期望 ^记D(x)为该数据的方差,E(x)为期望,则2113D(x)=E(x^2)-[E(x)]^2,这样就可以把5261E(X2)求出来,或者直接用定义法求4102也可以。数学期望是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。期望值是基础概率学的升级版,是所有管理决策的过程中,尤其是在金融领域是最实用的统计工具。某个事件(最初用来描述买彩票)的期望值即收益,实际上就是所有不同结果的和,其中每个结果都是由各自的概率和收益相乘而来。扩展资料离散型随机变量数学期望的内涵:在概率论和统计学中,离散型随机变量的一切可能的取值xi与对应的概率P(=xi)之积的和称为数学期望(设级数绝对收敛),记为1653E(x)。数学期望又称期望或均值,其含义实际上是随机变量的平均值,是随机变量最基本的数学特征之一。但期望的严格定义是∑xi*pi绝对收敛,注意是绝对,也就是说这和平常理解的平均值是有区别的。一个随机变量可以有平均值或中位数,但其期望不一定存在。参考资料来源:—数学期望
数学期望E(XY)怎么计算 如果X、Y独立,则:E(XY)=E(X)*E(Y)如果不独立,可以用定义计算:先求出X、Y的联合概率密度,再用定义.或者先求出Cov(x,y)再用公式 Cov(X,Y)=E(XY)-E(X)*E(Y),D(X±Y)=D(X)+D(Y)±2*Cov(X,Y)
超几何分布的数学期望是什么啊 E(X)= 一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品数记作X-H(N.M.n),其E(X)=nM/N
懂数学期望和方差的来 E(X^2)-2EX+1=10E(X^2)-4EX+4=6所以 EX=7/2 E(X^2)=16D(X)=E(X^2)-[E(X)]^2=16-(7/2)^2
数学期望E(x)和D(X)怎么求 数学期望为设X是一个随机变量,若E{[X-E(X)]^2}存在,则称E{[X-E(X)]^2}为X的方差,记为D(X),Var(X)或DX.即D(X)=E{[X-E(X)]^2}称为方差,而σ(X)=D(X)^0.5(与X有相同的量纲)称为标准差(或方差).