ZKX's LAB

怎样判断微分方程的线性与非线性 抛物型方程差分

2020-07-23知识11

目前数值计算领域中有限差分法和有限元法是很常用的方法,请问这两种方法有什么区别呢?如果一个偏微分方程能能用有限差分求解,那该方程同时还能用有限元法求解吗?谢谢everease先生的指教.我想做的是一个复杂过程的模拟.这其中涉及到电磁场,流场,和温度场,但是手上的软件为CFD软件,采用的是差分法求解;我想做二次开发,采用原软件的计算模块(FDM),计算温度场(抛物型)和电磁场(椭圆型),是不是仅仅是 怎样判断微分方程的线性与非线性 对于线性2113微分方程,其中只能出现函数本身,5261以及函数4102的任何阶次的导函数;函数本身跟所有的导1653函数之间除了加减之外,不可以有任何运算;函数本身跟本身、各阶导函数本身跟本身,都不可以有任何加减之外的运算;不允许对函数本身、各阶导函数做任何形式的复合运算,例如:siny、cosy、tany、lny、lgx、y2、y3。若一个微分方程不符合上面的条件,就是非线性微分方程。扩展资料线性方程:在代数方程中,仅含未知数的一次幂的方程称为线性方程。这种方程的函数图象为一条直线,所以称为线性方程。可以理解为:即方程的最高次项是一次的,允许有0次项,但不能超过一次。比如ax+by+c=0,此处c为关于x或y的0次项。微分方程:含有自变量、未知函数和未知函数的导数的方程称为微分方程。如果一个微分方程中仅含有未知函数及其各阶导数作为整体的一次幂,则称它为线性微分方程。可以理解为此微分方程中的未知函数y是不超过一次的,且此方程中y的各阶导数也应该是不超过一次的。参考资料-线性微分方程一阶线性偏微分方程都是抛物型的吗? 抛物型应该是对二阶偏微方程的分类吧,A=0就不适合这种讨论举个例子,按你这样说,对一元二次方程ax^2+bx+c=0,a=0,b=0,c≠0,△=b^2-4ac=0,那表明方程有两个相等实根?为什么热传导方程是抛物型,波动方程是双曲型的?定义里没有t这个变量应该怎么看啊? 一维热传导问题(图片中去掉 y)是抛物型方程。一维波动问题(图片中去掉 y)是双曲型方程,此时的双曲是针对变量 x 和 t 的。另外,椭圆型方程一般用于描述系统的稳态响应,也叫边值问题。抛物型和双曲型带有时间项(含变量 t),是一类初值问题。抛物型偏微分方程数值解怎么给出第三类边界条件 沿外法线的导数与边界内外函数值之差成正比dy/dn=k(y-f)其中,k是常数,f是已知的关于位置和时间的函数用matlab求解抛物型方程,急啊!!用最简隐格式(向后差分格式)求解抛物型方程 你的精确定绝对有问题。你自己将精确解代入那个泛定方程,或者初值都不符的。一维热传导方程的差分格式k=1/16;xleft=0;xright=1;tend=0.2;时间终值dx=0.1;dt=0.05;n=(xright-xleft)/dx;x=xleft:dx:xright;beta=k*dt/dx/dx;A=diag((1+2*beta*ones(n+1,1)))+diag(-beta*ones(n,1),1)+diag(-beta*ones(n,1),-1);Q=dt/gou/c*ones(n+1,1);边界条件A(1,1)=1;A(1,2)=0;A(end,end)=1;A(end,end-1)=0;T0=25*log(2*pi*x(:));Tseriers=T0;leg_info{1}='t=0';T=T0;i=1;for t=0:dt:tendi=i+1;right=T+Q;边界条件right(1)=0;right(end)=0;T=A\\right;Tseriers=[Tseriers,T];leg_info{i}=['t=',num2str(t)];endplot(x,Tseriers)legend(leg_info)plot(x,T,x,2*exp(-pi*tend/4)*sin(2*pi*x),'r*')legend({['T=',num2str(tend)],'精确解'})抛物型偏微分方程的抛物方程 。二阶线性偏微分方程(6)在区域Q内称为是抛物型的,如果存在常数α>;0,使得对于任意ξ∈Rn,(x1,x2,…,xn,t)∈Q 有。的形式。(7)称为具有散度形式的抛物型方程,(6)称为非散度形式的抛物型方程。时,(6)与(7)是有区别的,不能互推。如果方程(6)、(7)中的系数和右端还依赖于u,墷u,则(6)和(7)称为拟线性抛物型方程。抛物型方程和椭圆型方程的研究有相似的地方,它们互相影响、互为借鉴。椭圆型方程理论很多结果在抛物型方程中都有相应的定理,例如先验估计、极值原理等。

#线性微分方程#微分方程#matlab函数#线性系统#非线性

随机阅读

qrcode
访问手机版