间隙固溶体,间隙相,间隙化合物的定义是什么?有什么区别? 间隙固溶体 英文名称:interstitial solid solution 又称插入固溶体、嵌入固溶体.溶质原子占据溶剂晶格中的间隙位置而形成的固溶体.若干溶质质点嵌入固相溶剂质点的间隙中而构成的固溶体.通常.
间隙固溶体、间隙相和间隙化合物的结构和性能特点。 间隙32313133353236313431303231363533e4b893e5b19e31333431363062固溶体溶质原子分布于溶剂晶格间隙而形成的固溶体成为间隙固溶体。当溶质原子半径很小,使溶质与溶剂的原子半径差Δr41%时,溶质原子就可能进入溶剂晶格间隙中而形成间隙固溶体。溶质原子通常是原子半径小于0.1mm的一些非金属元素溶质原子引起溶剂点阵畸变,点阵常数变大,畸变能升高。因此,间隙固溶体都是有限固溶体,而且溶解度很小。原子半径较小的非金属元素如C,H,N,B等可与金属元素(主要是过度族金属)形成间隙相或间隙化合物这主要取决于非金属(X)和金属(M)原子半径的比值rX/rM;当rX/rM0.59时,形成具有简单晶体结构的相,称为间隙相;当rX/rM0.59时,形成具有复杂晶体结构的相,通常称为间隙化合物。间隙相具有比较简单的晶体结构,如FCC,HCP,少数为BCC或简单六方结构,与组元的结构均不相同。间隙相可以用化学分子式表示。间隙相不仅可以溶解其组成元素,而且间隙相之间还可以相互溶解。间隙相中原子间结合键为共价键和金属键即使大于非金属组元的原子数分数大于50%时,仍具有明显的金属特性,而且间隙相具有极高的熔点和硬度,同时其脆性也很大,是高合金钢。
304不锈钢退火工艺 原发布者:XUYOULI2011 原发布者:XUYOULI2011 SUS304不锈钢薄板形变硬化及退火软化 SUS304是一种18-8系的奥氏体不锈钢,通常用作冲压垫圈类紧固件。由于其冲压在各部分材料。
什么叫固溶强化 固溶强化,是指纯金属经过适当的 合金化 后,强度、硬度提高的现象。其原因可归结于溶质原子和位错的交互作用,这些作用起源于溶质引发的局部点阵畸变。。
残余应力的分类 残余应力介绍:构件在制造过程中,将受到来自各种工艺等因素的作用与影响;当这些因素消失之后,若构件所受到的上述作用与影响不能随之而完全消失,仍有部分作用与影响残留。
柏氏矢量和伯格斯矢量有什么联系和区别么?
晶界处滑移阻力最大;为什么呢 晶界上原子排列较乱,点阵畸变严重,杂质原子也容易在晶界偏聚,而且晶界两侧的晶粒取向不同,滑移方向和滑移面互不一致,因此,滑移要从一个晶粒滑移到下一个晶粒相当困难.
夜明珠是什么成份组成的? 夜明珠系相当稀有的宝物,古称“随珠”、“悬珠”、“垂棘”、“明月珠”等.夜明珠很多时候充当着镇国宝器的作用.通常情况下所说的夜明珠是指荧光石、夜光石.古书记载夜明珠用火烧时会发出美丽的光芒.它是大地里的一些发光物质经过了千百万年,由最初的岩浆喷发,到后来的地质运动,集聚于矿石中而成,含有这些发光稀有元素的石头,经过加工,就是人们所说的夜明珠,常有黄绿、浅蓝、橙红等颜色,把荧光石放到白色荧光灯下照一照,它就会发出美丽的荧光,这种发光性明显的表现为昼弱夜强.此外,部分工艺品也利用萤石的特征制作一些冠以“夜明珠”名称的饰品.报刊上报道说,工程师霍永锵、肖铭林二位同志于1982年在广东某钨矿床,发现了夜间自行发光的萤石,这些萤石五菜缤纷:浅绿的、深紫的、浅蓝的、浅棕的以及各种叫不出色彩的斑谰萤石,其中唯独浅棕色萤石在黑暗的夜晚里发光,相距2、3米远仍清晰可见美丽的夜光,靠近时,可借助其光亮分辨出报纸上有字与无字部分.尔后又发现,发光黄石在紫外线照射下,变成淡绿色萤光,未经照射的萤石则发出浅蓝、浅紫到深紫色夜光.霍永骼、肖铭林二位同志这次收集到的会发光的萤石颗粒较小,只有5至6毫米,颗粒尚不够理想,要获得可制成大颗粒圆珠的矿物还有待。
对于金属: 为什么晶界能比表面能大? 晶界能和表面能定义具体指什么?都属于金属键吗? 晶界能:形成单位面积界面系统时,系统的自由能变化时,他等于界面区单位面积的能量减去无界面时该区单位面积的能量。表面能:晶体表面单位面积自由能的增加称为表面能,也可以理解为单位面积新表面所作的功。晶界能的特点:1).晶界处点阵畸变大,存在着晶界能。因此,晶粒的长大和晶界的平直化都能减少晶界面积,从而降低晶界的总能量,这是一个自发过程。然而晶粒的长大和晶界的平直化均需通过原子的扩散来实现,因此,随着温度升高和保温时间的增长,均有利于这两过程的进行。2).晶界处原子排列不规则,因此在常温下晶界的存在会对位错的运动起阻碍作用,致使塑性变形抗力提高,宏观表现为晶界较晶内具有较高的强度和硬度。晶粒愈细,材料的强度愈高,这就是细晶强化;而高温下则相反,因高温下晶界存在一定的粘滞性,易使相邻晶粒产生相对滑动。3).晶界处原子偏离平衡位置,具有较高的动能,并且晶界处存在较多的缺陷如空穴、杂质原子和位错等,故晶界处原子的扩散速度比在晶内快得多。4).在固态相变过程中,由于晶界能量较高且原子活动能力较大,所以新相易于在晶界处优先形核。显然,原始晶粒愈细,晶界愈多,则新相形核率也相应愈高。5).由于成分偏析和内。