ZKX's LAB

正反转点动控制原理图 一只按钮开关控制电动机正反转工作原理图

2021-03-05知识14

三相异步电动机正反转控制接线图 如图所示2113:电机要实现正反转控制,将其电源5261的相序中任意两相对调即4102可(我们称为换相),通常是V相不变,1653将U相与W相对调,为了保证两个接触器动作时能够可靠调换电动机的相序,接线时应使接触器的上口接线保持一致,在接触器的下口调相。由于将两相相序对调,故须确保二个KM线圈不能同时得电,否则会发生严重的相间短路故障,因此必须采取联锁。为安全起见,常采用按钮联锁(机械)与接触器联锁(电气)的双重联锁正反转控制线路(如下图所示);使用了按钮联锁,即使同时按下正反转按钮,调相用的两接触器也不可能同时得电,机械上避免了相间短路。另外,由于应用的接触器联锁,所以只要其中一个接触器得电,其长闭触点就不会闭合,这样在机械、电气双重联锁的应用下,电机的供电系统不可能相间短路,有效地保护了电机,同时也避免在调相时相间短路造成事故,烧坏接触器。扩展资料正转用接触器和反转用接触器同时动作的情况:电动机的正反转控制操作中,如果错误地使正转用电磁接触器和反转用电磁接触器同时动作,形成一个闭合电路后,三相电源的L1相和L3相的线间电压。通过反转电磁接触器的主触头,形成了完全短路的状态,所以会有大的短路电流。

正反转点动控制原理图 一只按钮开关控制电动机正反转工作原理图

点动按钮,接触器双重连锁正反转控制线路电路图和工作原理是什么? 工作2113原理:QS:总开关 KM1:正转接触器5261 KM2:反转接触器 FR:热继电器4102 M3~:三相异步电机1653。PE:电机外壳接地 FU:控制线路熔断器 SB1:停止按钮 SB2:反转启动按钮 SB3:正转启动按钮。合上空开,按下SB2,KM2线圈得电,KM2主触点接通,电机反转,同时KM2常开辅助触点接通,这时放松SB2,但由于KM2常开辅助触点接通,所以KM2还是吸合的.这叫自锁。按下SB1:由于此时KM2线圈失电,KM2主触点断开,电机停止,同时KM2常开辅助触点也断开,这时放松SB1,但由于KM2常开辅助触点已断开,所以KM2不会从新吸合。按下SB3(正转)和电机反转的原理是一样的。这里SB2常闭触点作用是:当按下SB2时,如果再同时按SB3,但KM1还是不会得电,这叫按钮互锁。KM2常闭触点作用是:当KM2吸合时,KM1不可能得电.这叫接触器互锁。所以这里有两个互锁.这叫双重联锁电路。因为正反转电路中绝不允许两个接触器同时吸合,否则会引起主电路短路。FR热继电器作用:电机启动后,当主电路中电流太大时(电机过载),FR中的常闭触点会断开,从而把控制线路断开。原理和SB1是一样的,起保护作用。扩展资料:电机要实现正反转控制,将其电源的相序中任意两相对调即可(称为换相。

用plc控制电动机正反转原理图 1、实验原理三相异步电动机定子三相绕组接入三相交流电,产生旋转磁场,旋转磁场切割转子绕组产生感应电流和电磁力,在感应电流和电磁力的共同作用下,转子随着旋转磁场的旋转方向转动。因此转子的旋转方向是通过改变定子旋转磁场旋转的方向来实现的,而旋转磁场的旋转方向只需改变三相定子绕组任意两相的电源相序就可实现。如图2.1所示为PLC控制异步电动机正反转的实验原理电路。图2.1 PLC控制三相异步电动机正反转实验原理图左边部分为三相异步电动机正反转控制的主回路。由图 2.1可知:如果KM5的主触头闭合时电动机正转,那么 KM6 主触头闭合时电动机则反转,但 KM5 和 KM6 的主触头不能同时闭合,否则电源短路。右边部分为采用PLC对三相异步电动机进行正反转控制的控制回路。由图可知:正向按钮接PLC的输入口X0,反向按钮接 PLC的输入口X1,停止按钮接 PLC的输入口X2;继电器 KA4、KA5 分别接于 PLC 的输出口 Y33、Y34,KA4、KA5 的触头又分别控制接触器KM5和KM6的线圈。实验中所使用的PLC为三菱FX2N系列晶体管输出型的,由于晶体管输出型的输出电流比较小,不能直接驱动接触器的线圈,因此在电路中用继电器KA4、KA5 做中间转换电路。在KM5和KM6线圈回路中互串。

#正反转点动加自锁接线#点动正反转实物接线图#接触器正反转点动加自锁#正反转点动控制原理图#接触器点动正反转接线图

随机阅读

qrcode
访问手机版