ZKX's LAB

抛物型方程数值解摘要 求大神指点!matlab 第二题 求贝塞尔方程的数值解 并作出数值解曲线

2020-07-23知识17

微分方程数值解这门课讲的啥 微分方程数值解这门课程包括常微分方程初值问题的差分格式的构造和性态分析,椭圆型方程的差分方法,抛物型方程的差分方法,双曲型方程的差分方法。学完本课程后可掌握求解微分方程数值解的基本方法,能够根据具体的微分方程选用合适的计算方法。要求学习过数学分析、高等代数或线性代数、常微分方程,面向对象是数学系、信息与计算科学专业三四年级本科生。抛物型偏微分方程数值解怎么给出第三类边界条件 抛物型偏微分方程数值解怎么给出第三类边界条件 沿外法线的导数与边界内外函数值之差成正比 dy/dn=k(y-f)其中,k是常数,f。偏微分方程数值解讲义的目录 第1章 椭圆型偏微分方程的差分方法1.1 引言1.2 模型问题的差分逼近1.3 一般问题的差分逼近1.3.1 网格、网格函数及其范数1.3.2 差分格式的构造1.3.3 截断误差、相容性、稳定性与收敛性1.3.4 边界条件的处理1.4 基于最大值原理的误差分析1.4.1 最大值原理与差分方程解的存在唯一性1.4.2 比较定理与差分方程的稳定性和误差估计1.5 渐近误差分析与外推1.6 补充与注记习题1第2章 抛物型偏微分方程的差分方法2.1 引言2.2 模型问题及其差分逼近2.2.1 模型问题的显式格式及其稳定性和收敛性2.2.2 模型问题的隐式格式及其稳定性和收敛性2.3 一维抛物型偏微分方程的差分逼近2.3.1 直接差分离散化方法2.3.2 基于半离散化方法的差分格式2.3.3 一般边界条件的处理2.3.4 耗散与守恒性质2.4 高维抛物型偏微分方程的差分逼近2.4.1 高维盒形区域上的显式格式和隐式格式2.4.2 二维和三维交替方向隐式格式及局部一维格式2.4.3 更一般的高维抛物型问题的差分逼近2.5 补充与注记习题2第3章 双曲型偏微分方程的差分方法3.1 引言3.2 一维一阶线性双曲型偏微分方程的差分方法3.2.1 特征线与CFL条件3.2.2 迎风格式3.2.3 15ax-Wendroff格式和Beam-Warming。抛物型偏微分方程数值解怎么给出第三类边界条件 沿外法线的导数与边界内外函数值之差成正比dy/dn=k(y-f)数学分几大类 数学分26大类:1、数学史2、数理逻辑与数学基础:演绎逻辑学(也称符号逻辑学),证明论(也称元数学),递归论,模型论,公理集合论,数学基础,数理逻辑与数学基础其他学e799bee5baa6e4b893e5b19e31333431363062科。3、数论:初等数论,解析数论,代数数论,超越数论,丢番图逼近,数的几何,概率数论,计算数论,数论其他学科。4、代数学:线性代数,群论,域论,李群,李代数,Kac-Moody代数,环论(包括交换环与交换代数,结合环与结合代数,非结合环与非结合代数等),模论,格论,泛代数理论,范畴论,同调代数,代数K理论,微分代数,代数编码理论,代数学其他学科。5、代数几何学6、几何学:几何学基础,欧氏几何学,非欧几何学(包括黎曼几何学等),球面几何学,向量和张量分析,仿射几何学,射影几何学,微分几何学,分数维几何,计算几何学,几何学其他学科。7、拓扑学:点集拓扑学,代数拓扑学,同伦论,低维拓扑学,同调论,维数论,格上拓扑学,纤维丛论,几何拓扑学,奇点理论,微分拓扑学,拓扑学其他学科。8、数学分析:微分学,积分学,级数论,数学分析其他学科。9、非标准分析10、函数论:实变函数论,单复变函数论,多复变函数论,函数。

#微积分#数学#matlab函数#计算数学#微分方程

随机阅读

qrcode
访问手机版