三维空间中一点到一直线的距离。 |m是直线外一点,2113s是直线方向向量,在直线上5261任找一点M,距离d=|向4102量mM×s|/|s|。就是构造三角形的方法。空间直线的1653方向用一个与该直线平行的非零向量来表示,该向量称为这条直线的一个方向向量。直线在空间中的位置,由它经过的空间一点及它的一个方向向量完全确定。已知定点P0(x0,y0,z0)及非零向量v={l,m,n},则经过点Pο且与v平行的直线L就被确定下来,因此,点P0与v是确定直线L的两个要素,v称为L的方向向量。由于对向量的模长没有要求,所以每条直线的方向向量都有无数个。直线上任一向量都平行于该直线的方向向量。扩展资料平面方向向量的求解只要给定直线,便可构造两个方向向量(以原点为起点)。(1)即已知直线l:ax+by+c=0,则直线l的方向向量为=(-b,a)或(b,-a);(2)若直线l的斜率为k,则l的一个方向向量为=(1,k);(3)若A(x1,y1),B(x2,y2),则AB所在直线的一个方向向量为=(x2-x1,y2-y1)。参考资料:方向向量
空间一点到直线的距离公式 抛砖引玉:(1)直线恒过定点(x0,y0,z0),过该定点有且仅有一个平面π与该直线垂直,对吧?而且,该平面的法向量正好是直线的方向向量(m,n,p),点A(a,b,c)与定点(x0,y0,z0)构成了一个向量e对吧?e与直线的方向向量构成了一个矢量三角,由此就求出了距离。(2)较为容易:(a,b,c)与(x0,y0,z0)构成的向量与平面的法向量(A,B,C)平行对吧?平行则分量成比例,设比例系数为t,则x0,y0,z0可用t表示,将其代入平面方程,则求出t,进而求出x0,y0,z0.
求空间点到直线距离
空间中如何求点到直线的距离 设点A(x,y,z),直线L:(x-x0)/l=(y-y0)/m=(z-z0)/n,直现L通过B(x0,y0,z0),方向向量v=(l,m,n).点A到直线L的距离d=|BA*v|/|v|=根号下这一堆〔n(y-y0)-m(z-z0)〕^2+〔l(z-z0)-n(x-x0)〕^2+〔m(x-x0)-l(y-y0)〕^2再除以根号下(l^2+m^2+n^2).空间上的点到直线的距离的求法是大学的知识,有符号我的手机打不出来,请原谅哈.
急 空间中的点到直线的距离公式是什么啊?? 空间点到直线的方程是:(x-x0)/a=(y-y0)/b=(z-z0)/c。知识与技能目标:(1)理解点到直线距离公式的推导过程,并且会使用公式求出定点到定直线的距离;(2)了解两条平行直线的距离公式,并能推导的平方过程与方法目标:(1)通过对点到直线距离公式的推导,提高学生对数形结合的认识,加深用“计算”来处理“图形”的意识;(2)把两条平行直线的距离关系转化为点到直线距离。扩展资料:证明方法证:根据定义,点P(x?,y?)到直线l:Ax+By+C=0的距离是点P到直线l的垂线段的长,设点P到直线的垂线为l',垂足为Q,则l'的斜率为B/A则l'的解析式为y-y?=(B/A)(x-x?)把l和l'联立得l与l'的交点Q的坐标为((B^2x?-ABy?-AC)/(A^2+B^2),(A^2y?-ABx?-BC)/(A^2+B^2))参考资料来源:-点到直线距离
来高手,空间点到直线的距离怎么求?有没有公式什么的?