ZKX's LAB

数学期望值的公式 一维条件数学期望公式

2020-07-23知识20

数学期望值的公式 最低0.27元开通文库会员,查看完整内容>;原发布者:宁策127离散型如果随机变量只取得有限个值或无穷能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随机变量称为离散型随机变量。离散型随机变量的一切可能的取值 与对应的概率 乘积之和称为该离散型随机变量的数学期望[2](若该求和绝对收敛),记为。它是简单算术平均的一种推广,类似加权平均。公式离散型随机变量X的取值,为X对应取值的概率,可理解为数据 出现的频率,则:定理设Y是随机变量X的函数:(是连续函数)它的分布律为 若 绝对收敛,7a64e78988e69d8331333433623736则有:连续型设连续性随机变量X的概率密度函数为f(x),若积分绝对收敛,则称积分的值 为随机变量的数学期望,记为E(X)。若随机变量X的分布函数F(x)可表示成一个非负可积函数f(x)的积分,则称X为连续性随机变量,f(x)称为X的概率密度函数(分布密度函数)。数学期望 完全由随机变量X的概率分布所确定。若X服从某一分布,也称 是这一分布的数学期望。定理若随机变量Y符合函数,且 绝对收敛,则有:该定理的意义在于:我们求 时不需要算出Y的分布律或者概率密度,只要利用X的分布律或概率密度即可。上述定理还可以推广到两个或以上。数学期望的含义 最低0.27元开通文库会员,查看完整内容>;原发布者:儒雅的其它昵称1数学期望定义:设离散型随机变量X的分布律为xkpkk1P{Xxkpk,k1,2,.如果级数xkpk绝对收敛,则称xkpk的和为X的数学期k1k1望,记为E(X).即E(X)xkpk.k1xf(x)dx设连续型随机变量X的概率密度为f(x),如果积分xf(x)dx绝对收敛,则称xf(x)dx的值为X的数学期望,记为E(X).即E(X)xf(x)dx.注:数学期望是最基本的数字特征,数学期望是能够体现随机变量取值的平均数,数学期望简称期望,又称为均值。二、一维随机变量的函数7a686964616fe4b893e5b19e31333433623763的数学期望[X,E(g(X))?定理:设X是随机变量,Yg(X),g是连续函数.1).X是离散型随机变量,P{Xxkpk,k1,2,.若g(xk)pk绝对收敛,则有k1E(Y)E[g(X)]g(xk)pk.k12).X是连续型随机变量,概率密度为f(x),若g(x)f(x)dx绝对收敛,则有E(Y)E[g(X)]g(x)f(x)dx(证明超过范围,略)说明:在已知Y是X的连续函数前提下,当我们求E(Y)时不必知道Y的分布,只需知道X的分布就可以了.三、二维随机变量函数的数学期望定理:设(X,Y)是随机变量,Zg(X,Y),g是连续函数.1).(X,Y)是离散型随机变量,P{Xxi,Yyjpij,i,j如何计算数学期望值,在概率论和统计学中,数学期望(简称期望)是试验中每次可能结果的概率乘以其结果的总和。是最基本的数学特征之一。它反映随机变量平均取值的大小。怎样学习一维随机变量数学期望定义及性质 END 一键分享 QQ空间 新浪微博 云收藏 人人网 腾讯微博 相册 开心网 腾讯朋友 。免费 ssl证书-阿里云ssl证书https认证网站安全证书, www.aliyun.com 广告数学期望的意义是什么? 先上总结,期望是基于概率基础的,是对未知的预期。TZ应该分清楚一次的实际结果和你预期的结果两者的区别。以离散情况为例。[公式]你首先是已知在每一状态[公式]下的取值[公式一句话,均值是随机变量,随机变量,随机变量(具有概率特性)!(重要的话说三遍),期望是常数,是常数,是常数(不具有概率特性)!(这两个完全是两码事,楼里有些回答自己都没搞清楚)随机变量只是“事件”到“实数”的一个映射,如楼主,我也可以说正面=5,背面=7,这样期望就是6,因为事件具有概率性,故随机变量具有概率性。方差是随机变量到期望值距离的期望,随机变量最有可能落在“期望值”附近,不信你算算D(X)=1(D(X)=E((X-E(X))^2)和E((X-1)^2)=2和E((X+1)^2)=2。不管你信不信,从数学上讲,老子就是最有可能取值为0。这也说明了根据数学期望做决策也存在一定的不合理的因素。观测n个的随机变量Xi(i=1,2,.,n)(观测n次),n次观测值的平均值依概率收敛于n个随机变量期望的均值(大数定律)。n个随机变量和的分布的极限分布是正态分布(中心极限定理)。以及概率[公式]。然后你才能推断出期望。而概率在大多出情况下是由频数近似而来的。频数就是在事件发生的次数/实验的总次数。在。关于数学期望定义X是一维连续随机变量,Y是X的函数:Y=g(x),为什么EY=∫ g(x)f(x)dx,为什么g(x)乘的是f(x)而不是f(g(x))呢? 关于数学期望定义 E(Y)=E[g(X)]=∑g(Xk)Pk已知E(X)=∑XkPk因为其中的Pk是与随机变量X相对应的所以在E(Y)=E[g(X)]=∑g(Xk)Pk中,可以把g(Xk)看做一个整体随机变量XEX=∫xf(x)dxEY=∫g(x)f(x)dxx平方的数学期望和x的数学期望有什么关系 D(X)=E{[X-E(X)]^2}=E(X^2)-[E(X)]^2当D(X)=E{[X-E(X)]^2}称为变量X的方差,而称为标准差百(或均方差)度。它与X有相同的量纲。标准差是用来衡量一组数据的离散程度的统计版量。方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。扩展资料期望与方差的相关性质:1、权E(C)=C2、E(CX)=CE(X)3、E(X+Y)=E(X)+E(Y)4、当X和Y相互独立时,E(XY)=E(X)E(Y)5、设 X 与 Y 是两个随机变量,则其中协方差特别的,当X,Y是两个不相关的随机变量则何谓傅里叶定律?写出其数学表达式,并写出一维稳定温度场中的傅里叶公式。 傅里叶定律说明单位时间内通过壁面的导热量在数值上与热导率、温度梯度和导热面积成正比,即。t=f(x)时,。

#数学期望#概率计算#概率分布#数学#随机变量

随机阅读

qrcode
访问手机版