如何推导出回归直线方程的的系数b和a,用二乘法,详细点 方程Y=a+bX中的a和2113b是两个待定系数,根据样本实5261测(x,y)计算a与b就是求回归方程4102的1653过程。为使方程能较好地反映各点的分布规律,应该使各实测点到回归直线的纵向距离的平方和Q=∑(y-y')^2最小,这就是最小二乘法(least square method)原理。按以下公式计算:1.先求b:
线性回归方程a,b系数的推导过程 我们假设测定的时候,横坐标没有误差(自己设计的样品,认为没有误差),所以认为误差完全出现在纵坐标上,即测定值上.所以只要求出拟合直线上的点和样品纵坐标值的距离的最小值,就好了.就认为这个直线离所有点最近.设回归直线为y=mx+b.任意一点为(Xi,Yi),i是跑标,表示任意一个值.即求点(Xi,Yi)到与该点横坐标相同的拟合直线上的点(Xi,mXi+b)距离的最小值.所以距离为纵坐标相减,即d=|Y-Yi|=|mXi+b-Yi|.绝对值不好算,就换成平方.有d^2=(mXi+b-Yi)^2.现在把所有的距离相加.即Σ(i=1,n),从1开始,加到第n个,(我就不写了太费劲).Σd^2=Σ(mXi+b-Yi)^2.把d^2分别对m和b求偏导,因为你应该学过,最小值时候,导数应该等于0.对m求,m即斜率,认为斜率是变量,其他都看成常量.Σ[2*(mXi+b-Yi)Xi]=0,展开得mΣXi^2+bΣXi-ΣXiYi=0,解出b=(ΣYi-mΣXi)/n,n表示一共多少个点,就是代数预算,自己试试.对b求偏导,Σ[2*(mXi+b-Yi)*1]=0,解出mΣXi+nb=ΣYi联立方程,解出m和b.有,m=(nΣXiYi-ΣXiΣYi)/(nΣXi^2-(ΣXi)^2)b=(ΣYi-mΣXi)/n因为求和的ΣXi等于n乘以平均数.所以继续变形,就有hjg3604第二个链接里的公式了.我就不写了,太难打了.
如何推导会计中线性回归方程公式? 有问题,上知乎。知乎,可信赖的问答社区,以让每个人高效获得可信赖的解答为使命。知乎凭借认真、专业和友善的社区氛围,结构化、易获得的优质内容,基于问答的内容生产。