ZKX's LAB

非线控制性系统特性有什么 什么是线性系统?其最重要的特性是什么

2020-12-18知识6

与线性系统相比,非线性系统的稳定性有什么特点? 非线性系统 非线性控制系统 非线性控制系统 中会出现一些在线性系统中不可能发生的奇特现象,归纳起来有如下几点:①线性系统的稳定性和输出特性只决定于系统本身的结构和。

非线控制性系统特性有什么 什么是线性系统?其最重要的特性是什么

自动控制系统的基本要求是()、 快速性 、 准确性 。 自动控制系统的基本要求是稳定性、快速性、准确性。各种自动控制系统,为了完成一定任务,要求被控量必须迅速而准确地随给定量变化而变化,并且尽量不受任何扰动的影响。。

非线控制性系统特性有什么 什么是线性系统?其最重要的特性是什么

什么是线性系统?其最重要的特性是什么 ①线性系统的稳定性和输出特性只决定于系统本百身的结构和参数。而非线性系统的稳定性和输出动态过程,不仅与系统的结构和参数有关,而且还与系统的初始条件和输入信号大小有关。例如,在幅值大的初始条件下系统的运动是收敛的(稳定的),而在幅值小的初始条件下系统的运动却是发散的(不稳定的),或者情况相反。②非线性系统的平衡运动状态,除平衡点外还可能有周期解。周期解有稳定和不稳定两类,前者观察不度到,后者是实际可观察到的。因此在某些非线性系统中,即使没有外部输入作用也会产生有一定振幅和频率的振荡,称为自激振内荡,相应的相轨线为极限环。改变系统的参数可以改变自激振荡的振幅和频率。这个特性可应用于实际工程问题,以达到某种技术目的。例如,根据所测温度来影响自激振荡的条件,使之振荡或消振,可以构成双位式温度调节器。③线性系统的输入为正弦函数时,其输出的稳态过程也是同频率的正弦函数,两者仅在相位和幅值上不同。但非线性系统的输入为正弦函数时,其输出则是包含有高次谐波的非正弦周期函数,即输出会产容生倍频、分频、频率侵占等现象。④复杂的非线性系统在一定条件下还会产生突变、分岔、混沌等现象。

非线控制性系统特性有什么 什么是线性系统?其最重要的特性是什么

简要说明三频段中的低频段对控制系统的性能有什么影响

自动控制系统的基本要求是()、 快速性 、 准确性 。 自动控制系统2113的基本要求是稳定性、快速性、准5261确性。受扰动作用前系统4102处1653于平衡状态,受扰动作用后系统偏离了原来的平 衡状态,如果扰动消失以后系统能够回到受扰以前的平衡状态,则称系统是稳定的。生产过程中各种工艺条件不可能是一成不变的。特别是化工生产,大多数是连续性生产,各设备相互关联,当其中某一设备的工艺条件发生变化时,都可能引起其他设备中某些参数或多或少地波动,偏离了正常的工艺条件。当然自动调节是指不需要人的直接参与。扩展资料:在开环控制系统中,系统输出只受输入的控制,控制精度和抑制干扰的特性都比较差。开环控制系统中,基于按时序进行逻辑控制的称为顺序控制系统;由顺序控制装置、检测元件、执行机构和被控工业对象所组成。主要应用于机械、化工、物料装卸运输等过程的控制以及机械手和生产自动线。在工业方面,对于冶金、化工、机械制造等生产过程中遇到的各种物理量,包括温度、流量、压力、厚度、张力、速度、位置、频率、相位等,都有相应的控制系统。在此基础上通过采用数字计算机还建立起了控制性能更好和自动化程度更高的数字控制系统,以及具有控制与管理双重功能的过程控制系统。在农业方面的应用。

控制系统中,什么叫多输入多输出,如何判断

如何认识控制系统中非线性环节的作用 状态变量和输出变量相对于输入变量的运动特性不能用线性关系描述的控制系统。线性因果关系的基本属性是满足叠加原理(见线性系统)。在非线性控制系统中必定存在非线性元件,但逆命题不一定成立。描述非线性系统的数学模型,按变量是连续的或是离散的,分别为非线性微分方程组或非线性差分方程组。非线性控制系统的形成基于两类原因,一是被控系统中包含有不能忽略的非线性因素,二是为提高控制性能或简化控制系统结构而人为地采用非线性元件。非线性控制系统的框图,其中非线性环节的输出x(t)是输入e(t)的非线性函数。工程中的典型非线性特性有:①死区(不灵敏区)特性,如测量元件的不灵敏区,伺服电压的启动电压和干摩擦等特性。②饱和特性,如放大器的饱和输出特性,伺服阀的行程限制和功率限制。③间隙特性,如齿隙特性和油隙特性。④继电器特性。⑤变放大系数特性。非线性控制系统中会出现一些在线性系统中不可能发生的奇特现象,归纳起来有如下几点:①线性系统的稳定性和输出特性只决定于系统本身的结构和参数。而非线性系统的稳定性和输出动态过程,不仅与系统的结构和参数有关,而且还与系统的初始条件和输入信号大小有关。例如,在幅值大的初始条件。

非线性系统和线性系统相比有哪些特点 非线性2113控制系统中会出现一些在线性系统中不可能发5261生的奇特现象4102,归纳起来有如下几点:1653①线性系统的稳定性和输出特性只决定于系统本身的结构和参数。而非线性系统的稳定性和输出动态过程,不仅与系统的结构和参数有关,而且还与系统的初始条件和输入信号大小有关。例如,在幅值大的初始条件下系统的运动是收敛的(稳定的),而在幅值小的初始条件下系统的运动却是发散的(不稳定的),或者情况相反。②非线性系统的平衡运动状态,除平衡点外还可能有周期解。周期解有稳定和不稳定两类,前者观察不到,后者是实际可观察到的。因此在某些非线性系统中,即使没有外部输入作用也会产生有一定振幅和频率的振荡,称为自激振荡,相应的相轨线为极限环。改变系统的参数可以改变自激振荡的振幅和频率。这个特性可应用于实际工程问题,以达到某种技术目的。例如,根据所测温度来影响自激振荡的条件,使之振荡或消振,可以构成双位式温度调节器。③线性系统的输入为正弦函数时,其输出的稳态过程也是同频率的正弦函数,两者仅在相位和幅值上不同。但非线性系统的输入为正弦函数时,其输出则是包含有高次谐波的非正弦周期函数,即输出会产生倍频、分频、频率。

如何将非线性系统进行近似线性化 非线性系统的分2113析远比线性5261系统为复杂,缺乏能4102统一处理的有效数学工具,1653因此非线性控制系版统至今尚未权能象线性控制系统那样建立起一套完善的理论体系和设计方法。在许多工程应用中,由于难以求解出系统的精确输出过程,通常只限于考虑:①系统是否稳定;②系统是否产生自激振荡及其振幅和频率的测算方法;③如何限制自激振荡的幅值以至消除它,例如一个频率是ω的自激振荡可被另一个频率是ω1的振荡抑制下去,这种异步抑制现象已被用来抑制某些重型设备的伺服系统中由于齿隙引起的自振荡。在某些工程问题中,非线性特性还常被用来改善控制系统的品质。例如将死区特性环节和微分环节(见控制系统的典型环节)同时加到某个二阶系统的反馈回路中去,就可以使系统的控制既快速又平稳。又如,可以利用继电特性来实现最速控制系统。

随机阅读

qrcode
访问手机版