ZKX's LAB

随机变量序列如果具有相同的数学期望和方差 可否断定它们就是同分布的呢? 随机变量的方差数学期望

2020-07-23知识10

求解一道关于数学期望和方差的问题 随机变量Y与X的关系为Y=2X+2为一次关系公式E(ax+b)=aE(x)+b,D(ax+b)=a2D(x)随机变量X的数学期望为2即E(x)=2E(Y)=2E(x)+2=6随机变量X的方差为2即D(x)=2D(y)=4*D(x)=8随机变量的数学期望存在,其方差一定存在吗?判断题 随机变量的数学期望存在,其方差不一定存在。随机变量数学期望与方差有什么关系 是这样,随机变量是概率论的概念,是数学家在试图用数学模型来描述客观世界时建立的概念。样本是统计学里的概念,是统计学家应实际生产需要设计统计模型时所建立的概念,但是为了保证算法的正确,统计学使用了概率论作为数学工具,也就是说在统计学中应用了数学模型,例如这里的一个合理假设就是,每一个样本在取样前都应该认为是一个随机变量。简而言之一句话,样本是随机变量,具有随机变量所有的性质,而随机变量更广泛,不一定是样本,例如一次实验的样本之间是独立同分布的,任意两个随机变量之间则无需有这个条件。二维随机变量的数学期望与方差? 概率论与数理统计教材上并未概括二维随机变量和二维随机变量函数的方差,包括离散型和连续型,请问是不能…常见随机变量的分布中,数学期望和方差一定相等的分布是 泊松分布,分布列为(p^k)*exp(-p)/k。k=0,1 2,….数学期望和方差均为p随机变量正态分布中,数学期望和方差有什么关系 对于正态分布X∽N(μ,σ2)来说,均值μ,也就是数学期望EX,和方差σ2,即DX,是两个重要参数。它可以用来研究连续性随机变量。所以无论是不是正态分布,对一组数据来。随机变量的数学期望存在,其方差一定存在吗 一个随机变量的期望存在,其方差并不一定存在。一个反例是:概率密度为x>;1时,f(x)=2/x^3,x≤1时f(x)=0。随机变量序列如果具有相同的数学期望和方差 可否断定它们就是同分布的呢? 不可以期望和方差相同的太多了.完全不是一回事反之,同分布则期望方差相同成立最低0.27元开通文库会员,查看完整内容>;原发布者:xuphahgu第9讲随机变量的数学期望与方差教学目的:1.掌握e68a84e8a2ade799bee5baa631333433623764随机变量的数学期望及方差的定义。2.熟练能计算随机变量的数学期望与方差。教学重点:1.随机变量的数学期望2.随机变量函数的数学期望3.数学期望的性质4.方差的定义5.方差的性质教学难点:数学期望与方差的统计意义。教学学时:2学时。教学过程:第三章随机变量的数字特征§3.1数学期望在前面的课程中,我们讨论了随机变量及其分布,如果知道了随机变量X的概率分布,那么X的全部概率特征也就知道了。然而,在实际问题中,概率分布一般是较难确定的,而在一些实际应用中,人们并不需要知道随机变量的一切概率性质,只要知道它的某些数字特征就够了。因此,在对随机变量的研究中,确定其某些数字特征是重要的,而在这些数字特征中,最常用的是随机变量的数学期望和方差。1.离散随机变量的数学期望我们来看一个问题:某车间对工人的生产情况进行考察。车工小张每天生产的废品数X是一个随机变量,如何定义X取值的平均值呢?若统计100天,32天没有出废品,30天每天出一件废品,17天每天出两件废品,21天每天出三件废品。这样。关于数学期望方差的问题 随机变量的概率密度形式具有唯一性,这道是87年数学一真题,你少打了系数1/√π。概率密度凑形为 f(x)=1/(√2π·1/√2)exp{-(x-1)2/2(1/√2)2} 故期望μ=1,标准差σ=1/。

#均值-方差模型#数学#随机变量#数学期望#方差公式

随机阅读

qrcode
访问手机版