ZKX's LAB

正态分布的数学期望是? 正态分布的数学期望为0

2020-12-13知识8

正态分布的数学期望是? 正态分布的期望就是μ,也就是对称轴,楼主追问的问题答案是1(因为两个区间长度一样都是2,概率也一样说明这两个区间关于μ对称,所以对称轴就是两个区间的中间(-1+3)/2。

正态分布的数学期望是? 正态分布的数学期望为0

概率论,标准正态分布的期望?如下; 常数项省略,被积函数是xf(x)=x*e^(-x^2/2)原函数就是-e^-(x^2/2)代入正无穷和负无穷都是0

正态分布的数学期望是? 正态分布的数学期望为0

正态分布的期望值和方差是什么? 在概率2113论和统计学中,数学期望(mean)(或均5261值,亦简称期望)为试验中4102每次可能结果的概率乘以其1653结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。方差为各个数据与平均数之差的平方的和的平均数,即其中,x表示样本的平均数,n表示样本的数量,xi表示个体,而s2就表示方差。扩展资料当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。样本中各数据与样本平均数的差的平方和的平均数为样本方差;样本方差的算术平方根为样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。方差和标准差为测算离散趋势最重要、最常用的指标,它是测算数值型数据离散程度的最重要的方法。标准差为方差的算术平方根,用S表示。参考资料来源:-方差参考资料来源:-数学期望

正态分布的数学期望是? 正态分布的数学期望为0

正态分布的数学期望是多少? 正态分布2113的数学期望是u。正态分布5261(Normal distribution)又名高4102斯分布(Gaussian distribution),是一个在数学、物理1653及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。若随机变量X服从一个数学期望为μ、方差为σ^2的高斯分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。因其曲线呈钟形,因此人们又经常称之为钟形曲线。我们通常所说的标准正态分布是μ=0,σ=1的正态分布。

正态分布的期望和方差怎么求 不用二重积分的,可以有简单的办法的.设正态分布概率密度函数是f(x)=[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]其实就是均值是u,方差是t^2,不太好打公式,你将就看一下.于是:e^[-(x-u)^2/2(t^2)]dx=(√2π)t.(*)积分区域是从负无穷到正无穷,下面出现的积分也都是这个区域,所以略去不写了.(1)求均值对(*)式两边对u求导:{e^[-(x-u)^2/2(t^2)]*[2(u-x)/2(t^2)]dx=0约去常数,再两边同乘以1/(√2π)t得:[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]*(u-x)dx=0把(u-x)拆开,再移项:x*[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx=u*∫[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx也就是x*f(x)dx=u*1=u这样就正好凑出了均值的定义式,证明了均值就是u.(2)方差过程和求均值是差不多的,我就稍微略写一点了.对(*)式两边对t求导:[(x-u)^2/t^3]*e^[-(x-u)^2/2(t^2)]dx=√2π移项:[(x-u)^2]*[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx=t^2也就是(x-u)^2*f(x)dx=t^2正好凑出了方差的定义式,从而结论得证.

正态分布的数学期望 E(x^4)x^4*1/√(2π)e^(-x^2/2)dx 积分区间(-∞,+∞)2∫x^4*1/√(2π)e^(-x^2/2)dx 积分区间(0,+∞)分步积分.2x^3*1/√(2π)e^(-x^2/2)+2/√(2π)∫3x^2*e^(-x^2/2)dx2x^3*1/√(2π)e^(-x^2/2)-2/√(2π)3x*e^(-x^2/2)2/√(2π)∫3*e^(-x^2/2)dx积分区间(0,+∞)1/√(2π)∫e^(-x^2/2)dx=1/22/√(2π)∫3*e^(-x^2/2)dx=3*2*1/2=3而2x^3*1/√(2π)e^(-x^2/2)-2/√(2π)3x*e^(-x^2/2)2x^3/√(2π)e^(x^2/2)-6x/√(2π)*e^(x^2/2)利用罗必塔法则,lim2x^3/√(2π)e^(x^2/2)-6x/√(2π)*e^(x^2/2)=0所以E(x^4)=3

正态分布数学期望问题(含绝对值) x0时在0到正无穷的积分,X服从标准正态分布这是确定的,不会因为你用它干什么而变化变.所以μ和σ是不会变化的.

随机阅读

qrcode
访问手机版