当前学习人工智能是不错的选择,随着人工智能技术的不断发展和应用,整个行业领域会释放出大量的相关人才需求。中国人工智能发展迅猛,中国政府也高度重视人工智能领域的发展。到今年,中国人工智能产业规模超过1500亿元,带动相关产业规模超过1万亿元。全球新兴人工智能项目中,中国占据51%,数量上已经超越美国。但全球人工智能人才储备,中国却只有5%左右,人工智能的人才缺口超过500万。
全球共有超过360所具有人工智能研究方向的高校,其中美国拥有近170所,中国仅30多所。虽然一些中国高校开设了相关课程,但总体上缺乏人工智能的基础教学能力,高校在独自培养具有动手能力的应用型人才上有所欠缺。那么,学习人工智能需要学习哪些课程呢?怎么样学才能更好的掌握专业知识呢?
人工智能,开启新世界
学习人工智能需要学习认知心理学、神经科学基础、人类的记忆与学习、语言与思维、计算神经工程相关专业知识。
1、认知与神经科学课程群
具体课程:认知心理学、神经科学基础、人类的记忆与学习、语言与思维、计算神经工程
2、人工智能伦理课程群
具体课程:《人工智能、社会与人文》、《人工智能哲学基础与伦理》
3、科学和工程课程群
新一代人工智能的发展需要脑科学、神经科学、认知心理学、信息科学等相关学科的实验科学家和理论科学家的共同努力,寻找人工智能的突破点,同时必须要以严谨的态度进行科学研究,让人工智能学科走在正确、健康的发展道路上。
4、先进机器人学课程群
具体课程:《先进机器人控制》、《认知机器人》、《机器人规划与学习》、《仿生机器人》
5、人工智能平台与工具课程群
具体课程:《群体智能与自主系统》《无人驾驶技术与系统实现》《游戏设计与开发》《计算机图形学》《虚拟现实与增强现实》……
6、人工智能核心课程群
具体课程:《人工智能的现代方法I》《问题表达与求解》、《人工智能的现代方法II》《机器学习、自然语言处理、计算机视觉等》……
人工智能产业应用型人才的摇篮
怎么样的方法才能更好地掌握专业知识?
学习人工智能技术通常要根据自身的知识基础来选择一个学习切入点,对于初学者来说,可以按照三个阶段来学习人工智能技术,分别是基础知识阶段、人工智能平台阶段和实践阶段。
想学好人工智能,这些一定要学好
1. 机器学习
首先要学习机器学习算法,这是人工智能的核心,也是重中之重。
在学习机器学习算法理论同时,建议大家使用scikit-learn 这个python 机器学习的库,试着完成一些小项目。同时关注一下能否各种算法结合使用来提高预测结果准确率。在学习的过程中不必强求自己能够完全掌握各种算法推导,抓住重点理解算法,然后把算法用起来才是王道。
掌握一种编程工具,比如说 PyCharm 或者 Jupyter Notebook,当然工具掌握不难,大约只需要 30 分钟。
2. 深度学习
深度学习是当今非常热门的一个领域,是机器学习算法神经网络的延申,是把机器学习 的拟人更加发扬光大的领域。深度学习工程师也是各大公司需要的人才。
学习深度学习可以从 Google 开源的 tensorflow 框架开始学习如何完成 DNN(深度神经网络)的构建以及应用。然后还是使用 tensorflow 框架来学习如何完成 CNN(卷积神经网络)的构建以及应用。最后来使用 tensorflow 框架来学习如何完成 RNN(循环神经网络)的构建以及应用。
3. Python 数据分析模块
Python 当今作为数据科学的第一语言,熟练掌握 numpy、scipy、pandas、matplotlib 等数据分析的模块不光是作为数据分析师必须的,也是作为人工智能工程师所必须的, 如果大家认为自己的 python 语言掌握的不够熟练,可以从学习这些基础的模块开始,来锻炼自己。因为 scikit-learn 机器学习算法库是基于 numpy、scipy、matplotlib 开发的,所以大家掌握好了这些基础库,对于分析别人封装的算法源代码,甚至日后自己开发一些算法也 有了可能性。
4. Spark MLlib 机器学习库
如果说当今有什么是算法工程师的加分项,那么分布式计算框架 Spark 中算法库MLlib 就是一个,如果想掌握 Spark MLlib首先需要会使用 spark 计算框架, 建议大家还是使用python 语言通过 pyspark 来学习,在掌握了前面的机器学习部分后,这里再来学习里面的算法使用将变得异常容易。
5. 做一个人工智能项目
学了这么多,也做了一些小项目,最后一定要做一些个大项目整合一下自己的知识。做一些个人工智能领域的譬如医疗图像识别、人脸识别、自动聊天机器人、推荐系统、用户画 像等的大项目才是企业很需要的经验。可以将理论结合实际的运用也是成为高手的必经之路, 也是在企业工作所需要的能力。
6. 数学
数学是一个误区,很多人说自己的数学不够好,是不是做不了算法工程师?面对这样的问题,公司里面的算法工程师谁又敢说自己的数学真的好?数学是在学习机器学习阶段算法推导用的到的,但是这里的推导你又不需要非要一步步扣数学计算过程,举个例子,2+2=4, 那么数据基础是 1+1=2,但是咱们需要证明 1+1=2 吗?不需要,对吧,所以在机器学习阶段算法推导这里更重要的还是理解算法证明的思想,能够把讲的算法推导理清楚足够了,而这在讲的过程中如何有好的引导,又何须非自己没头绪的补数学然后走那个弯路呢?
人工智能产业应用型人才的摇篮
人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。