灰色关联分析法的应用实例 [例]山西省汾河上游的输沙量与降雨径流的灰色关联分析汾河是山西省的主要河流,在汾河下游距太原市100多公里的西山修建了汾河水库。该水库不但对农业灌溉、防洪蓄水、鱼类养殖等起着很大作用,并且还为太原市的用水提供了保证。建库以来,人们经常在考虑如何防止库容被泥沙淤塞,使水库能长期有效为工农业生产与人民生活服务。影响泥沙输入水库的因素较多,比如降雨量、径流量、植被覆盖率等。在这些因素中哪些是主要的,哪些是次要的有待研究和量化分析。根据关联系数求关联度得r1=0.41(年径流量与输沙量的关联程度)r2=0.21(年平均降雨量与输沙量的关联程度)r3=0.23(平均汛期降雨量与输沙量的关联程度)相应的关联序为r1>;r3>;r2上述关联序表明对输沙量影响最大的是年径流量,其次是汛期降雨量,再其次是平均年降雨量。实际上,强度大的暴雨冲刷力大,难以被土壤吸收,从而在地表形成径流,造成水土流失,引起河道泥沙流量的形成而暴雨又大多在汛期,因此径流量是引起河道输沙的综合因素,所以径流量大反映了雨强大,反映了水土保持较差,反映了水土流失较严重,反映了汛期雨量较大。而汛期的降雨量可能是雨强较大的的降雨量,也可能是雨强较小的降雨量。而。
怎样用matlab做灰色关联度分析方法 function f=grayrelated(X,Y)这里X是标准化后的参考序列,Y是评价矩阵Y=71.8 90.1 0.57 0.45 051 40.2 0.38 0.55 10.552 25 0.22 0.52 1268 90 0.38 0.38 2128 40 0.32 0.3 18.551 45 0.15 0.3 576 95 0.7 0.55 1287 95 0.7 0.5 9.876 90 0.57 0.5 1150 35 0.32 0.35 2068 90 0.57 0.35 18.582 95 0.7 0.35 0100 200 1 1 097.5 180 0.94 0.95 1.395 160 0.88 0.9 2.586.3 105 0.68 0.75 6.382.5 90 0.6 0.7 7.578.8 75 0.53 0.65 8.875 60 0.45 0.7 7.568.8 52.5 0.41 0.55 13.862.5 45 0.38 0.5 17.556.3 37.5 0.34 0.45 21.343.8 26.3 0.28 0.35 50.650 30 0.3 0.4 2537.5 22.5 0.25 0.3 7531.3 18.8 0.23 0.25 10018.8 11.3 0.15 0.15 168.825 15 0.2 0.2 12512.5 7.5 0.1 0.1 212.56.3 0.8 0.05 0.05 256.3输入评价矩阵YX=[1 1 1 1 1];X为参考序列,均为1,个数就是指标个数,情形不同要修改个数Len=size(Y,2);取Y矩阵的列数,也就是指标的个数Wen=size(Y,1);取行数,就是目标个数for i=1:LenY(:,i)=(Y(:,i)-mean(Y(:,i)))/sqrt(var(Y(:,i)));将Y矩阵用统计方法标准化标准化,endfor i=1:Len-1S(:,i)=(Y(:,i)-min(Y(:,i)))./。
灰色关联度法的计算步骤 灰色系统关2113联分析的具体计算步骤5261如下:(1)确定反映系统行为特征的参考数列和4102影响系统行1653为的比较数列反映系统行为特征的数据序列,称为参考数列。影响系统行为的因素组成的数据序列,称比较数列。(2)对参考数列和比较数列进行无量纲化处理由于系统中各因素的物理意义不同,导致数据的量纲也不一定相同,不便于比较,或在比较时难以得到正确的结论。因此在进行灰色关联度分析时,一般都要进行无量纲化的数据处理。(3)求参考数列与比较数列的灰色关联系数ξ(Xi)所谓关联程度,实质上是曲线间几何形状的差别程度。因此曲线间差值大小,可作为关联程度的衡量尺度。对于一个参考数列X0有若干个比较数列X1,X2,…,Xn,各比较数列与参考数列在各个时刻(即曲线中的各点)的关联系数ξ(Xi)可由下列公式算出:其中 ζ为分辨系数,0<;ζ。是第二级最小差,记为Δmin。是两级最大差,记为Δmax。为各比较数列Xi曲线上的每一个点与参考数列X0曲线上的每一个点的绝对差值。记为Δoi(k)。所以关联系数ξ(Xi)也可简化如下列公式:(4)求关联度ri因为关联系数是比较数列与参考数列在各个时刻(即曲线中的各点)的关联程度值,所以它的数不止一个,。
灰色关联度分析法和因子分析法,分析的结果总体上基本一致,但也有部分数据差别较大,可能的问题在哪里?
dps灰色关联分析方法和灰色预测方法的应用,灰色关联分析,从其思想方法上来看,属于几何处理的范畴,其实质是对反映各因素变化特征的数据序列所进行的几何比较。。