有限差分法的差分方法的发展和应用 前面阐述了两个自变量,线性方程的差分法。实际问题常会遇到多个自变量,非线性的方程或方程组;它们还可能是混合型的偏微分方程(如。
高手,请问如何用有限差分法求解抛物线型的偏微分方程,用matlab,能告诉我具体的编程程序了,万分感谢了~~~急 ?X/?t=?/?z(Deff?X/?z);0<;z With the following conditions: Initial:t=0;0<;z;X=X0 Boundary:t>;0;z=0;?X/?z=0 t>;0;z=L;X=Xeq 这是我要求的偏微分方程,谢谢谢谢了
数值分析的内容简介 《数值分析(高校教材)》系统地阐述了数值分析的基本知识,介绍了各种数值计算方法,全书共分十三章。第一章介绍数值计算的基本概念和误差分析的知识;。
目前数值计算领域中有限差分法和有限元法是很常用的方法,请问这两种方法有什么区别呢?如果一个偏微分方程能能用有限差分求解,那该方程同时还能用有限元法求解吗?谢谢everease先生的指教.我想做的是一个复杂过程的模拟.这其中涉及到电磁场,流场,和温度场,但是手上的软件为CFD软件,采用的是差分法求解;我想做二次开发,采用原软件的计算模块(FDM),计算温度场(抛物型)和电磁场(椭圆型),是不是仅仅是
果一个偏微分方程能能用有限差分求解,那该方程同时还能用有限元法求解吗? 有限差分主要用来求解非定常问题,也就是解随着时间变化的问题。有限元主要用来求解定常问题,也就是解已经达到稳态,不再随时间变化。从方程分类来说,一般双曲型方程用有限差分,椭圆型用有限元。我对那些软件不了解,计算椭圆型也是可以用FDM的。有挺多的有限元的软件包,你可以学着用下
抛物面、圆柱面、椭球面的方程有什么特点 二次曲面一般形式为 ax^2+by^2+c z^22d xy+2eyz+2fxz+gx+hy+iz+j=0考虑观测者在无穷远处观测,方程的一次项和常数项都是小量,因此形状取决于二次式ax^2+by^2+c z^22d xy+2eyz+2fxz=0写为(x,y,z)A(x,y,z)^T=0,A 为矩阵a d fd b ef e c用相似变换将其对角化得到Ss1 0 00 s2 00 0 s3对应方程(z1,z2,z3)S(z1,z2,z3)^T=0分如下几种情况s1,s2,s3 都是正或都是负的,z=0,对应在无穷远处收缩为0的点,正是椭球在无穷远处的情形;s1,s2,s3 两正一负或两负一正,对应无穷远处锥形,正是双曲面在无穷远处的情形;s1,s2,s3 两正一零或两负一零,对应无穷远处收缩为线,正是抛物面在无穷远处的情形.不过严格的抛物面对应的两个非零s还要相等;s1,s2,s3 一正一负一零,对应无穷远处收缩为两个面,正是双曲柱面在无穷远处的情形;s1,s2,s3 两零,对应无穷远处收缩为细线形,正是椭圆柱面在无穷远处的情形.不过严格的圆面对应的两个非零s还要相等;s1,s2,s3 两零,对应无穷远处收缩为一个线,正是抛物面在无穷远处的情形;
关于抛物线的方程式 y=ax虏+bx+c锛坅鈮?锛?br>褰搚=0鏃?鍗筹細ax虏+bx+c=0锛坅鈮?锛夊氨鏄姏鐗╃嚎鏂圭▼寮?鐭ラ亾涓変釜鏉′欢,鑳芥妸a銆乥銆乧涓変釜绯绘暟纭畾鍑烘潵鍗冲彲.涓変釜鏉′欢锛?銆佸彲浠ユ槸宸茬煡鐨勪笁涓偣.2銆佷袱涓偣鍜屽绉拌酱x=-b/锛?a锛?3銆佷竴涓偣鍜屾姏鐗╃嚎鐨勯《鐐筟-b/锛?a锛?锛?ac-b虏锛塡/(4a锛塢.4銆佸叾瀹冪殑涓変釜鏉′欢.椤剁偣鐨勭‘瀹氾細1銆侀厤鏂规硶.y=ax虏+bx+c=a锛坸-b/2a锛壜?锛?ac-b虏锛塡/(4a锛?2銆佺敤椤剁偣鍏紡璁$畻.x=-b/锛?a锛?y=锛?ac-b虏锛塡/(4a锛?寮€鍙f柟鍚戯細鍙喅瀹氫簬a鐨勬璐?a>;0,寮€鍙e悜涓婏細a
跪求MATLAB解抛物型偏微分方程的程序 1,不一定有效果,因为pdetool具体编程是不知道的,如果解决小问题两者的结果一样说明不了什麽问题,尤其对于偏微分方程。2有限元的边界必须固定,从数理方程上讲静态有限元问题就是边值问题,如果边界变化的话,初始一下别的专业有限元软件,比如anasys,adima等。