费马原理怎么解释,我不是问怎么证明,而是为什么会有时间最短的效应 你习惯于用起因和结果2113来思考折射:光照5261到水面上是起4102因,方向的变化是结果1653。但费马定理听上去很古怪,因为它以目的的形式来描述光的行为。它就像是光线的指挥官,‘你应该将抵达目的的时间最小化或最大化。假若按人类行为学来说,光得检验每条可能的路线并计算每条得花多少时间,光线得知道目的在哪儿。假如目的地在某某其他地方,最快的路线就会不同,计算沿着一条假想的路线需多长时间也需要关于在这条路线上有什么东西的信息,比如水面在哪?在光开始移动前,它得事先知道所有这一切,光线不能沿着老路前进,然后再在后来返回。因为引起这样行为的路线不是最快的。在一开始光就已经做好了全部的计算在光线能够选择它移动的方向前,它已经知道它最终会在那里结束。
费马原理是什么 费马原理是几何光学中的一条重要原理,由此原理可证明光在均匀介质中传播时遵从的直线传播定律、反射和折射定律,以及傍轴条件下透镜的等光程性等.光的可逆性原理是几何光学中的一条普遍原理,该原理说,若光线在介质中沿某一路径传播,当光线反向时,必沿同一路径逆向传播.费马原理规定了光线传播的唯一可实现的路径,不论光线正向传播还是逆向传播,必沿同一路径.因而借助于费马原理可说明光的可逆性原理的正确性.光在任意介质中从一点传播到另一点时,沿所需时间最短的路径传播.
费恩曼的物理学讲义中对费马原理,也就是光的最短时间原理的表述中的时间的一级变化和二级变化如何理解? 原文:“在某一特定路径上行进的光具有这样的一种性质,那就是,如果我们不论用何种方式使光路做微小改变…
费马原理是什么 地震学中的2113费马原理:地震波沿射线传5261播的旅行时和沿其他路4102径传播的旅行时相比1653为最小,亦是波沿旅行时最小的路径传播。光学中的费马原理:光线在两点间的实际路径是使所需的传播时间为极值的路径。在大部分情况下,此极值为最小值,但有时为最大值,有时为恒定值。费马原理对折射定律的证明假设光从介质n_1入射到介质n_2。在两个介质的交界面上取一条直线为x轴,法线为y轴,建立直角坐标系;在入射光线上任取一点A(x_1,y_1),光线与两介质交界面的交点为B(x,0),在折射光线上任取一点C(x_2,y_2)。AB之间的距离为\\sqrt,BC之间的距离为\\sqrt。由费马原理可知,光从A点经过B点到C点,所用的时间t 应该是最短的。t=\\left(\\frac\\right)(ABn_1+BCn_2),t 取最小值的条件是\\frac=0。经整理得 \\frac=\\frac,\\sin\\theta_1=\\frac 且 \\sin\\theta_2=\\frac 即 n_1\\sin\\theta_1=n_2\\sin\\theta_2(Snell's law)
什么是等光程原理 等光程原理(费马原理)是最短光时线可以有多条,例如光线从椭圆面焦点A经过反射到另一焦点B,可以有无数条路径,但所有这些路径的光线传播时间都相等。费马原理是几何光学。
物理光学中的费马定理的具体内容 物理中的费马原理是一条光学原理,它的表述如下:首先是光程的概念:[L]=nL,其中n为介质的折射率,l为光在介质中的实际路程。费马原理说的是光线总是沿着光程最平缓的路径。
如何用费马原理证明光的反射定律?
费马原理的原理 费马原理(Fermat's principle)最早由法国2113科学家皮埃5261尔·德·费马在1662年提出:4102光传播的路径是光程取1653极值的路径。这个极值可能是最大值、最小值,甚至是函数的拐点。最初提出时,又名“最短时间原理”:光线传播的路径是需时最少的路径。费马原理更正确的称谓应是“平稳时间原理”:光沿着所需时间为平稳的路径传播。所谓的平稳是数学上的微分概念,可以理解为一阶导数为零,它可以是极大值、极小值甚至是拐点。扩展资料:用微分或变分法可以从费马原理导出以下三个几何光学定律:1、光线在真空中的直线传播。2、光的反射定律-光线在界面上的反射,入射角必须等于出射角。3、光的折射定律(斯涅尔定律)。最短光时线可以有多条,例如光线从椭圆面焦点A经过反射到另一焦点B,可以有无数条路径,所有这些路径的光线传播时间都相等。参考资料来源:-费马原理
为什么费马大定理表述起来这么简单,证明却这么复杂? 整数,乘方,按说是很直观的逻辑,定理本身表达也非常简单,看了《费马大定理》一书,很震撼,小时候上课…