ZKX's LAB

一阶龙格库塔 欧拉法 数值分析计算方法求解

2020-07-22知识9

龙格-库塔方法求解三阶常微分方程 第一步:将高阶常微分方程转换成常微分方程组,func(t,x)第二步:调用runge_kutta(@func,y0,h,a,b)例如:二阶常微分方程func。mfunction z=func(t,y)z=[y(2);(1-y(1)^2)*y(2)-y(1)];main。mclear all;close all;clcy0=[0.25;0];h=0.1;a=0;b=20;[t1 y1]=runge_kutta(@rhs_7,y0,h,a,b)取h=0.2,用四阶经典的龙格一库塔方法求解下列初值问题; 数值求解,通俗来讲就是对一个难以得到解析解的方程,通过数学上的一些定理,在离散的点上得到具体的数值。结果必须是具体的数字,同时需要一定的边界条件。以dy/dx=y-2x/y,其中初始条件y(0)=1为例,通过MATLAB编程实现四阶龙格-库塔算法,并将结果与改进的欧拉算法进行对比。这种算法保持了四阶龙格-库塔法精度高的优点,而且数值积分程序计算量小,仿真速度较之一般实时四阶龙格-库塔法可提高约3.5位。扩展资料:注意事项:有更为有效的积分法,其局部误差是二阶或更高阶,如二阶龙格库塔法,只需要把x∧(t+dt):=x∧(t)+fx∧(t),u(t)·dt替换。注意在该表达式中,x∧Et+23dt可以理解为用欧拉法在时间t+23dt进行积分得到的值。方括号内是f(x(t),u(t))的估计值和fx∧t+23dt,ut+23dt的估计值的平均值。其局部误差et是二阶的,因此该积分法具有更好的精度。参考资料来源:-龙格库塔法分别用改进的欧拉法和四阶龙格-库塔公式求解微分方程初值问题 分别用改进的欧拉法和四阶龙格-库塔公式求解微分方程初值问题(1)Y'=Y-2X/Y,Y(0)=1,X=[0,1],H=0.1(2)Y'=X2+。

#龙格库塔法

随机阅读

qrcode
访问手机版