ZKX's LAB

影响机器视觉检测结果的重要场景因素

2020-11-26新闻9

在工业领域,机器视觉技术已应用于工业自动化系统中,以取代传统上的人工检查来提高生产质量和产量。从拾取和放置、对象跟踪到计量、缺陷检测等应用,利用视觉数据可以通过提供简单的通过失败信息或闭环控制,来提高整个系统的性能。

视觉的使用并不仅仅在工业自动化领域,在日常生活中,视觉相机也同样被大量应用,例如应用于计算机、移动设备中。摄像头在几年前被引入到汽车中,如今汽车中已配备了大量摄像头,为驾驶员提供完整的360°车辆视图。

机器视觉检测可改善自动化设置。集成的机器人解决方案可快速轻松地提供机器视觉检测的优势。但是,即使技术有所改进,视觉也是机器人技术的一个比较“棘手”的问题。

机器视觉检测系统最常见的功能是检测已知物体的位置和方向,在完善硬件、程序和算法设置等环节之外,也需要充分考量照明、背景等因素。

一、照明

如果有过在低光照下拍摄数码照片的经验,就会知道照明至关重要。糟糕的照明会毁掉一切。成像传感器不像人眼那样适应性强或敏感。如果照明类型错误,视觉传感器将无法可靠地检测到物体。有各种克服照明挑战的方法。一种方法是将有源照明结合到视觉传感器本身中。其他解决方案包括使用红外照明,环境中的固定照明或使用其他形式的技术,例如激光。

二、变形或铰接

三、位置和方向

机器视觉检测系统最常见的功能是检测已知物体的位置和方向。因此,大多数集成视觉解决方案通常都克服了这些挑战。只要整个物体可以在摄像机图像内被查看,检测物体的位置通常是直截了当。许多系统对于对象方向变化的检测非常灵敏。但是,并不是所有的方向都是易于检测的。虽然检测沿一个轴旋转的物体是足够简单的,但是检测物体的3D旋转则更为复杂。

四、背景

图像背景对物体检测有很大的影响。举一个极端的例子,对象被放置在一张纸上,在该纸上打印同一对象的图像。在这种情况下,机器视觉检测设置可能无法确定哪个是真实的物体。完美的背景是空白的,并提供与检测到的物体良好的对比。它的确切属性将取决于正在使用的视觉检测算法。如果使用边缘检测器,那么背景不应该包含清晰的线条。背景的颜色和亮度也应该与物体的颜色和亮度不同。

五、遮挡

遮挡意味着物体的一部分被遮住了。在前面的几种情况中,整个对象出现在相机图像中。遮挡是不同的,因为部分对象丢失。视觉系统显然不能检测到图像中不存在的东西。有各种各样的东西可能会导致遮挡,包括其他物体、机器人的部分或相机的不良位置。克服遮挡的方法通常涉及将对象的可见部分与其已知模型进行匹配,并假定对象的隐藏部分存在。

六、尺度

在某些情况下,人眼很容易被尺度上的差异所欺骗。机器视觉检测系统可能被他们弄糊涂了。想象一下,你有两个完全相同的物体,只是一个比另一个大。想象一下,您正在使用固定的2D视觉设置,物体的大小决定了它与机器人的距离。尺度的另一个问题,也许不那么明显,就是像素值的问题。如果将机器人相机放置得很远,则图像中的对象将由较少的像素表示。当有更多的像素代表对象时,图像处理算法会更好地工作,但也存在一些例外。

七、照相机放置

不正确的相机安装位置可能会导致以前出现过的任何问题,所以重要的是要正确使用它。尝试将照相机放置在光线充足的区域,以便在没有变形的情况下尽可能清楚地看到物体,尽可能靠近物体而不会造成遮挡。照相机和观看面之间不应有干扰的背景或其他物体。

八、运动

运动有时会导致计算机视觉设置出现问题,特别是在图像中出现模糊时。例如,这可能发生在快速移动的传送带上的物体上。数字成像传感器在短时间内捕获图像,但不会瞬间捕获整个图像。如果一个物体在捕捉过程中移动太快,将导致图像模糊。我们的眼睛可能不会注意到视频中的模糊,但算法会。当有清晰的静态图像时,机器视觉检测效果最佳。

#AI人工智能#智能机器人

随机阅读

qrcode
访问手机版