如何证明热传导方程是抛物型方程 光滑性)若?呏0,则由初值问题解的表达式可看出,若u0(x,y,z)有界连 抛物型偏微分方程 抛物型偏微分方程 续,则初值问题(1)、(2)的解u(x,y,z,t)当t>;0时都是无穷次连续可微的。抛物型偏微分方程的极值原理 一个内部有热源的热传导过程(即在方程(1)中?≥0),它的最低温度一定在边界上或初始时刻达到,这就是所谓的极值原理。事实上,还可以有更强的结论:①如果在t=T时在Ω内部某一点达到了最低温度,那么在这个时刻T以前(即t时)整个物体的温度等于常数,这就是所谓的强极值原理;②如果这个最低温度只在t=T时刻的某一边界点P达到,那么在这一点(n是嬠Ω的外法向),此即所谓的边界点引理。极值原理与边界点引理在热传导方程的研究中有很多应用,它的一个最直接的推论就是导出了热传导方程初边值问题解的唯一性和稳定性。至于初值问题(1)、(2)的解的唯一性,它与解在无穷远点的性态有关。如果对于初值问题(1)、(2),附加上无穷远点增长阶的限,这里A,M是任意给定正常数,那么由极值原理可以证明初值问题(1)、(2)的解必唯一。热传导方程是什么类型的偏微分方程 热传导方程是抛物型偏微分方程简称抛物型方程您好 我想请问一个一维热传导的偏微分的方程差分格式 能否帮忙? Grank-Nicholson方法源程序:function[u,x,t]=Grank_Nicholson(A,xf,T,it0,bx0,bxf,M,N)解方程 A u_xx=u_t,0,0初值:u(x,0)=it0(x)边界条件:u(0,t)=bx0(t),u(xf,t)=bxf(t)M:x 轴的等分段数N:t 轴的等分段数dx=xf/M;x=[0:M]*dx;dt=T/N;t=[0:N]'*dt;for i=1:M+1u(i,1)=it0(x(i));endfor n=1:N+1u([1 M+1],n)=[bx0(t(n));bxf(t(n))];endr=A*dt/dx/dx;r1=2*(1+r);r2=2*(1-r);for i=1:M-1P(i,i)=r1;(9.2.17)Q(i,i)=r2;if i>;1P(i-1,i)=-r;P(i,i-1)=-r;(9.2.17)等式左边矩阵Q(i-1,i)=r;Q(i,i-1)=r;(9.2.17)等式右边矩阵endendfor k=2:N+1b=Q*u(2:M,k-1)+[r*(u(1,k)+u(1,k-1));zeros(M-2,1)];u(2:M,k)=linsolve(P,b);(9.2.17)endu=u';例2.1 Grank-Nicholson方法求解一维抛物性方程应用实例。求满足以下条件的热传导数值解:自变量取值:边界:解:在MATLAB中编写脚本文件:A=0.5;方程系数it0=inline('sin(pi*x)','x');初始条件bx0=inline('0');bxf=inline('0');边界条件xf=2;M=25;T=0.1;N=100;[u1,x,t]=Grank_Nicholson(A,xf,T,it0,bx0,bxf,M,N);mesh(u1)xlabel('x')ylabel('t')zlabel('U')椭圆型偏微分方程、抛物型偏微分方程、双曲型偏微分方程分别对应什么物理意义? 椭圆型偏微分方程:二维平面稳定场方程,如稳定浓度分布,稳定温度分布,静电场方程,无旋稳恒电流场方程,无旋稳恒流动方程等抛物型偏微分方程:一维输运方程,如扩散方程,热传导方程等双曲型偏微分方程:一维波动方程,如弦振动方程,杆振动方程,电报方程等它们是分别描述二维平面稳定场,一维输运,一维波动问题的方程抛物型偏微分方程的格林函数 基本解是点热源的影响函数。如果在t=0时刻在(ξ,η,ζ)处给定单位点热源,即u0(x,y,z,0)=δ(ξ,η,ζ)(δ是狄喇克函数),则当t>;0时由它引起的在全空间 R3的温度分布(即热传导方程(1)的解)称为热传导方程的基本解。通过傅里叶变换可以得到它的表达式。当t>;0时 热传导方程初值问题(1)、(2)的解可通过叠加的步骤由基本解生成对于一个有界区域Ω,若边界温度为零,在初始时刻在(ξ,η,ζ)处给定一个单位点热源u(x,y,z,0)=δ(ξ,η,ζ),当t>;0时由它引起在Ω内的温度分布(即热传导方程的解)称为热传导方程第一边值问题的格林函数,记作G(x-ξ,y-η,z-ζ,t)。根据格林公式,式中l*是l的共轭算子,任意第一边值问题(1)、(2)、(3)的解都可通过格林函数表为格林函数可以通过基本解来表示:这里时是一个定义在捙×【0,∞)上的充分光滑函数。对于一维问题或Ω为立方体等特殊区域,格林函数可以通过分离变量法或镜像法去求得。抛物型偏微分方程的定解问题 为了确定一个具体的热传导过程,除了列出方程(1)以外,还必须知道物体Ω的初始温度(初始条件)和在它的边界嬠Ω上所受到的外界的影响(边界条件)。初始条件:边界条件,最通常的形式有三类。第一边界条件(或称狄利克雷条件):即表面温度为已知函数。第二边界条件(或称诺伊曼条件):式中n是Ω的外法向,即通过表面的热量已知。第三边界条件(或称罗宾条件):式中α≥0;即物体表面给定热交换条件。除了以上三类边界条件外还可以在边界嬠Ω上给定其他形式的边界条件,如斜微商条件、混合边界条件等。方程(1)连同初始条件(2)以及边界条件(3)、(4)、(5)中的任意一个一起构成了一个定解问题,根据边界条件的不同形式,分别称为第一、二、三边值问题,统称为热传导方程的初边值问题或混合问题。若Ω呏R3,则由方程(1)和初始条件(2)构成的定解问题称为热传导方程的初值问题或柯西问题。为什么热传导方程是抛物型,波动方程是双曲型的?定义里没有t这个变量应该怎么看啊? 一维热传导问题(图片中去掉 y)是抛物型方程。一维波动问题(图片中去掉 y)是双曲型方程,此时的双曲是针对变量 x 和 t 的。另外,椭圆型方程一般用于描述系统的稳态响应,也叫边值问题。抛物型和双曲型带有时间项(含变量 t),是一类初值问题。
随机阅读
- 价格在20元左右的白酒,喝什么牌子比较实惠? 顺德永丰10元一份海鲜
- 风云漫画,被认为是武林第一人的笑三笑,他的实力是否真的无敌?
- 南阳市行政审批大厅 星期六星期日上班吗??? 南阳市行政审批服务中心几点上班
- 行政起诉状不服土地决定 不服行政复议决定的起诉状是怎么样的呢?
- 一粒一粒豌豆糕做法 豌豆面做的豌豆糕
- 乌兰乌苏绿洲农田生态与农业气象试验站 大家有去过新疆的吗?觉得新疆怎么样?比如风景美食如何?
- 轰轰战队冒险者的主题歌 中村静香大胸
- 北碚区城市绿地系统规划文本 我国物业管理行业现状以及物业管理中经常出现的法律问题?
- 瓦房店到天津南火车票多少钱? 天津站瓦房店的火车
- 炒股软件哪个好 哪款炒股软件好
- 有的领导怎听到你为着他做事,他就高兴? 有工作请吩咐 随时待命
- 辐射 新维加斯 得到一本修理临时+10的书的秘籍 是多少??? 新维加斯 爆破
- 如何看待电视剧《杀破狼》官宣檀健次饰演顾昀、陈哲远饰演长庚? 十万买断母子情
- 提前开工申请报告范文 开工令和开工申请报告有什么不同?
- 土地批复行政复议决定 知道土地批复后多长时间行政复议
- 金塔在线宾馆前台招聘 #海友良品
- 闻思修行下载 为什么不闻思的修行都是旁生因
- 女性性激素六项单位 女性性激素六项检查
- 被质疑人对废标提出质疑 我的标书漏签一个名,废标合理吗?有法律依据提出质疑?
- 求张艺谋的《我的父亲母亲》的迅雷下载地址?请原创回答 他母亲的房子 迅雷