ZKX's LAB

概率论中为什么数学期望不一定存在? 满意观众的概率数学期望

2020-11-26知识5

概率论中均匀分布的数学期望和方差该怎么求啊? 均匀分布2113的期望:均匀分布的期望是取值区间[a,b]的中5261点(a+b)/2。4102均匀分布的方差:var(x)=E[X2]-(E[X])2var(x)=E[X2]-(E[X])2=1/3(a2+ab+b2)-1/4(a+b)2=1/12(a2-2ab+b2)=1/12(a-b)2若X服从[2,4]上的均1653匀分布,则数学期望EX=(2+4)/2=3;方差DX=(4-2)2/12=1/3。扩展资料1、标准均匀分布若a=0并且b=1,所得分布U(0,1)称为标准均匀分布。标准均匀分布的一个有趣的属性是,如果u1具有标准均匀分布,那么1-u1也是如此。2、相关分布(1)如果X服从标准均匀分布,则Y=Xn具有参数(1/n,1)的β分布。(2)如果X服从标准均匀分布,则Y=X也是具有参数(1,1)的β分布的特殊情况。(3)两个独立的,均匀分布的总和产生对称的三角分布。参考资料来源:-均匀分布

概率论中为什么数学期望不一定存在? 满意观众的概率数学期望

关于数学期望方差的问题 随机变量的概率密度形式具有唯一性,这道是87年数学一真题,你少打了系数1/√π。概率密度凑形为 f(x)=1/(√2π·1/√2)exp{-(x-1)2/2(1/√2)2} 故期望μ=1,标准差σ=1/。

概率论中为什么数学期望不一定存在? 满意观众的概率数学期望

“概率统计 ”“数学期望\ 1、概率统计是研究自然界中随机现象统计规律的数学方法,叫做概率统计,又称数理统计方法。概率统计主要研究对象为随机事件、随机变量以及随机过程。2、数学期望值是在概率论和统计学中,一个离散性随机变量的期望值(或数学期望、或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和。拓展概率统计是应用概率的理论来研究大量随机现象的规律性;对通过科学安排的一定数量的实验所得到的统计方法给出严格的理论证明;并判定各种方法应用的条件以及方法、公式、结论的可靠程度和局限性。使我们能从一组样本来判定是否能以相当大的概率来保证某一判断是正确的,并可以控制发生错误的概率。随机现象从随机现象说起,在自然界和现实生活中,一些事物都是相互联系和不断发展的。在它们彼此间的联系和发展中,根据它们是否有必然的因果关系,可以分成截然不同的两大类:一类是确定性的现象。另一类是不确定性的现象。期望值运用在统计学中,当估算一个变量的期望值时,一个经常用到的方法是重复测量此变量的值,然后用所得数据的平均值来作为此变量的期望值的估计。在概率分布中,期望值和方差或标准差是一种分布的重要特征。在经典力学中,物体重心的算法与。

概率论中为什么数学期望不一定存在? 满意观众的概率数学期望

数学概率与期望问题 很高兴回答你的问题:我是这样想的。题里没说触发d消耗多少,我就当做是0数值太大先缩小,a触发消耗2,b触发消耗4,c触发消耗6,一共是1000。1.设立事件A:a允许了b且允许了c且允许了d且触发d这个的概率P(A)=50%*50%*50%1/8,一共消耗2+4+6=12;2.设立事件B:a允许了b且允许了c但没允许d这个概率P(B)=50%*50%*50%1/8,一共消耗2+4+6=12;3.设立事件C:a允许了b但没允许c概率P(C)=50%*50%1/4,一共消耗2+4=6;4.设立事件D:a没允许b概率P(D)=50%1/2,一共消耗2;P.S:所谓的b触发c,然后a重新触发b,这个等价于 a允许b但是没允许c。所以这些特殊情况实际都被包括在上述4个事件中了。那么,上述每一个事件为一轮,我们假设这1000点共发生了N轮,无论发生ABCD的哪一个。那么A发生了N/8次,B发生了N/8次,C发生了N/4次,D发生了N/2次。有:12*N/8+12*N/8+6*N/4+2*N/2=1000 解得 发生次数N的期望是 N=2000/11那么能触发d的只有事件A,发生的次数是 N/8=250/11所以出发的d的次数的数学期望应该就是 250/11个人想法,如有帮助希望【选为满意答案】,有问题欢迎一起讨论,谢谢。

大学数学求期望 (0,+∞)xf(x)dx=∫(0,+∞)x/[π(1+x^2)]dx=(1/2π)ln(1+x^2)(0,+∞)不存在期望E(x)不存在.

概率题求出数学期望后怎么求方差? 方差有两种求法第一种:根据定义求设方差=Var(X)则Var(X)=(2-37/10)^2×(3/5)+(3-37/10)^2×(3/10)+(4-37/10)^2×(1/10)第二种:用公式求方差Var(X)=E(X^2)-[E(X)]^2=[(2^2×5/3)+(3^2×3/10)+(4^2×1/10)]-(37/10)^2这两种算法的结果是一样的

数学概率与期望 数学期望首先要先求出概率,然后就比较好做了。若抛掷一次则则0的概率是1/2,1的概率是1/3,2的概率是1/6抛掷2次,就是考虑0,1,2出现的顺序p0=1/2,p1=1/3,p2=1/6则,q0=p0*p0=1/4q1=C12*p0*p1=1/3q2=p1*p1+C12*p0*p2=5/18q3=C12*p1*p2=1/9q4=p2*p2=1/36Eq=0*q0+1*q1+2*q2+3*q3+4*q4=4/3

求高手指点一下:条件概率和条件数学期望的关系

随机阅读

qrcode
访问手机版