ZKX's LAB

直线与椭圆的距离公式推导 椭圆上的点到直线上的距离怎么求?

2020-07-22知识16

怎么求椭圆上一点到直线的距离 用点到直线距离公式 d=∣Ax+By+C∣/√(A2+B2).如果求椭圆上点到直线距离的最大(小)值,可设椭圆上的点为参数形式,即x'=aCOSθ,y=bSinθ,代入d,用三角函数方法求最值.高中数学:求椭圆上一点.该点到椭圆外的一条直线距离最小,除了用点到直线距离公式,还有一种方法是将直线。 方法:若已知直线方程为Ax+By+C1=0,(A,B,C1为常数)1.可设平行于已知直线且与椭圆相切的直线方程为:AX+By+C2=0,(C2为常数)2.联立椭圆方程,消去一个未知数(比如y),得到一个关于x的二次方程;3.令判断式等于0,解出C2的值,(有两个);4.代入关于x的二次方程,求出切点的横坐标,再代入直线方程AX+By+C2=0,求出纵坐标.注:两个解,一个是距离最小的点,一个是距离最大的点.5.若要求出距离,则可用两平行线间的距离公式:d=|C2-C1|/√(A2+B2)怎么求椭圆上一点到直线的距离 用参数方程.x=acosθ,y=bsinθ椭圆上一点坐标为(acosθ,bsinθ)利用点到直线距离公式,列出一个关于θ的三角函数关系,用三角函数去算最值在椭圆x216+y29=1上求一点,使它到直线y=x-9的距离最短.根据题意,当与直线y=x-9平行的直线与椭圆相切时,距离最短故可设l方程为:y=x+m代入椭圆x216+y29=1得:25x2+32mx+16m2-144=0 ①0得:(32m)2-4×25×(16m2-144)=0得:m=±5根据题意,取m=-5代入①解得:x=165y=165-5=-95故此点为:(165,-95).椭圆上的点到直线上的距离怎么求? 点到直线的距离。1.直线方程:Ax+By+C=02.坐标:(Xo,Yo)3.公式:│AXo+BYo+C│除以√(A2+B2)连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度,叫做点到直线的距离。直线Ax+By+C=0 坐标(Xo,Yo)那么这点到这直线的距离就为:│AXo+BYo+C│/√(A2+B2)。点到直线的距离叫做垂线段。过程与方法:1.通过对点到直线距离公式的推导,提高学生对数形结合的认识,加深用“计算”来处理“图形”的意识;2.把两条平行直线的距离关系转化为点到直线的距离。

#双曲线#椭圆#椭圆的标准方程#椭圆离心率#直线方程

随机阅读

qrcode
访问手机版