什么是随机微分方程,求举个实际例子 微分方程中含有随机参数或随机过程(函数)或随机初始值或随机边界值的叫随机微分方程:举个简单的例子:1)my'‘+cy'+ky=f(t)f(t)-平稳。
请问,学习随机微分方程需要什么数学基础?谢谢! 顾名思义,首先需要微积分中求解微分方程的基础知识,其次要有概率论和数理统计的基础知识。不知道你是什么背景,浙大朱位秋院士在随机振动方面做得比较突出。
什么是随机微分方程,求举个实际例子 微分方程中含有随机参数或随机过程(函数)或随机初始值或随机边界值的叫随机微分方程:举个简单的例子:1)my'‘+cy'+ky=f(t)f(t)-平稳随机过程的一个样本函数;求y(t);2)my'‘+cy'+ky=0 其中 N(0,1);求自由振动y(t).等等
随机微分方程是解决什么问题的 《随机微分方程》(第6版)是《Universitext》丛书之一,是一部理想的研究生教材。2006年由世界图书出版社出版。该书内容做了较大的修改和补充,包括鞅表示论、变分不等式和随机控制等内容,书后附有部分习题解答和提示。随机微分方程在数学以外的许多领域有着广泛的应用,它对数学领域中的许多分支起着有效的联结作用。
什么是倒向随机微分方程 倒向随机微分方程,即“巴赫杜(Pardoux)-彭方程”,在随机分析、随机控制和金融数学界已经获得了很高的国际知名度。从数学的角度看,世界的本质是。
随机微分方程与常微分方程的区别与联系 随机微分方程中带有标准布朗运动B(t)那项,它是关于过程B(t)的微分(这个微分实际不再是通常意义下的微分),而常微分方程中是关于一个普通变量的微分。主要区别在这一点,因为B(t)的运算规则与普通的微分不一样。
完整学习测度论、实分析、随机微分方程需要多久时间? 有数分、线代、概率、常微的基础,会一点集合论。没有泛函、拓扑基础。对于实分析、测度,自学了年把,没…
为什么一般解微分方程的概念不适用于随机微分方程? 然而,随机过程函数本身的导数不可定义,是故一般解微分方程的概念不适用于随机微分方程
求解随机微分方程 sqr(·)表示平方根(1)Y满足的方程,用Ito公式即可dY=2(2-X)Xdt+2Xsqr(X)dBt+XdBt=(5X-2X^2)dt+2Xsqr(X)dBt(2)先把X的微分方程携程积分形式,积分限是从0到t,下面省略不写Xt=X0+∫(2-Xs)ds+∫sqr(Xs)dBs,两边取期望,最后一项是鞅,期望为0,变为EXt=EX0+E∫(2-Xs)dsEX0+∫E(2-Xs)dsEX0+2t-∫EXsds令f(t)=EXt,则f(t)=EX0+2t-∫f(s)ds,写成常微方程为f'(t)+f(t)-2=0 且初始条件为f(0)=EX0解得EXt=f(t)=(EX0-2)e^(-t)+2
在实际解决问题时,什么情况下才能用随机微分方程来处理? ? 邀请回答 ? 好问题 1 ? 2 条评论 4 数学研究生 2 人赞同了该回答 不知如何理解实际解决问题,如果是指生活中的话,基本用不到,如果是指应用到数学之外的领域。