基于WirelessUSB技术的无线遥控器设计 多输入多输出(MIMO)技术是诸如移动WiMAX及3GPP长期演进(LTE)等先进无线通信技术的关键技术。MIMO系统可以克服因多径衰落、干扰以及频谱资源有限而遇到的接收问题。大多数。
线性均衡器和非线性均衡器有什么区别 理解是,时域均衡是为了消除数据在传输过程中由于符号间干扰产生的影响,均衡技术通常可分为线性均衡和非线性均衡两类。线性均衡器相对简单,信道衰落不严重时可以较好的消除信道影响,常用的算法有迫零(ZF)算法和最小均方误差(MMSE)算法。当无线信道多径衰落严重时,信道频域响应中会出现很深的“凹槽”。为了补偿“凹槽”附近的幅度衰落,线性均衡器必须对该段频谱进行放大,从而也使该频段的噪声增强。而非线性均衡器在这种恶劣的信道下会有较好的效果,判决反馈均衡器(DFE)是非线性均衡器中常7a64e78988e69d8331333363363562见的一种,在实际系统中得到广泛应用。近年来更复杂的最大似然序列均衡技术(MLSE)也逐渐应用于移动无线信道的均衡器中。理论上,理想时域均衡的单载波系统和多载波系统性能是一样的,但是受硬件资源的限制,实际的时域均衡器通常达不到最佳性能。不管是线性还是非线性均衡,传统的时域均衡器复杂度都与信道的最大时延扩展成正比,而多载波的频域均衡复杂度与信道最大时延扩展的对数成正比。均衡器成了制约单载波系统性能提高的“瓶颈”。多载波正交频分复用(OFDM)是一种并行传输技术,它在指定频带上设置K个等间隔的子载波,每。
慢衰落的影响
多径衰落的产生原因 移动通信的电波传播包括直射波、绕射波、散射波和反射波。当仅有直射波和一路反射波时,如果反射波路径变化,路程差变化,两路信号在接收点的相位也就发生变化。在陆地移动通信系统中,移动台往往工作在城市建筑群和其他地形地物较为复杂的环境中。由于移动台天线高度较低,大部分时间都“淹没”在城市建筑物的高度之下,根本没有视线路径。所以基站和移动台之间的电波传播几乎没有直射波形式,而是出现了多条路径的反射信号,以致到达接收天线的信号是来自不同传播路径的各电波的合成波。由于传播路径不同,反射体的性质不同,使得到达接收点的各反射波的幅度和相位都是随机的。可能存在的直射波和众多不同路径的反射波,在较小范围内不同位置的场强有时同相相加而变大,有时反相抵消而变小,形成驻波分布。而在移动通信环境中,即使周围环境不变,移动台在驻波场中的快速移动,也会造成接收天线接收的合成波的幅度快速和大范围的变化。这就形成了接收机所接收信号的多径快衰落现象。对于不同波段,不同传播方式,形成多径传播的机理不尽相同。三张附图说明了短波电离层反射信道与超短波、微波对流层散射信道和移动通信的多径衰落产生的原理。
如何用matlab来仿真无线信道
pn码的同步过程
为什么要降低移动通信的时延 在移动通信系统中,由于用户的移动,接收信号不可避免地受到移动台运动速度和多径衰落的影响。因此,基站和移动终端之间的通信信道是限制通信系统总体性能的关键。研究电波在信道中的传播及变化规律,建立信道模型,在设计整个系统时可以用来预测各种调制方式及纠错编码方案对误码率的影响,确定最佳调制方式、纠错编码方式及多址接入方式,从而获得有效和可靠的数据传输。本文在前人研究的基础上,对高速运动环境中的移动通信多径信道的电波传播特性进行研究,将随机过程理论、速度参量、地形因素与无线通信原理相结合对电波的入射角、多径径数分布、多径传播路程差和时延分布、多径传播反散射次数分布、多径衰落系数进行了详细分析、仿真和讨论,建立符合Markov过程的多径信道模型参数。通过推导得出的信道参数,综合考虑各种因素并结合随机过程理论,针对现有无线信道模型的不足,提出一种建立无线信道改进思路,并建立适用于高速运动环境中的移动通信多径信道改进模型,并通过仿真模拟分析校验模型真实程度,借助于所建模型对特定环境下信号包络、衰落持续时间、信号时延散布、传输误码率等信道性能进行分析验证。通过分析信道特性,提出现有技术来解决多径衰落和多普勒频移所导致。
零均值平稳高斯窄带随机过程,其包络的一维分布是 冰的多用户检测AWGN同步CDMA系统的自适应 特征值分解算法 蒋笑了,洛华李,冯钰敏/>;(通信多媒体研究室北方交通大学,北京100044,中国)摘要:多用户检测可以采取提高CDMA。
移动通信原理与系统的目录 第1章 概述1.1 移动通信发展简述1.2 移动通信的特点1.3 移动通信工作频段1.3.1 我国移动通信的工作频段1.3.2 第三代移动通信的工作频段1.4 移动通信的工作方式1.5 移动通信。