为何缺偶次项求幂级数收敛域的问题!求好心人解答!
怎么知道幂级数完整不完整?什么叫缺项的幂级数?高等数学问题?为什么这个幂级数是缺项的呢? 这个幂级数的x只有奇次项,没有偶次项,故该幂级数不完整
缺项的幂级数怎么求收敛域 令x2=t,就得到原式=x∑(-1)^n*t^n/(2n+1)这就可以看成是关于t的不缺项的级数了。缺项的幂级数不能用前后项系数的比或根式的极限来求收敛半径,而只能用数项级数的比值判别。
幂级数里缺项跟不缺项求收敛域区别在哪 区别:是缺项的幂级e5a48de588b6e799bee5baa6e997aee7ad9431333431356130数不能用前后项系数的比或根式的极限来求收敛半径,而只能用数项级数的比值判别法或根式判别法来求。缺项就看x的幂跳没跳,比如x、x^2、x^3这种就是正常的,x、x^3、x^5或者x、x^4、x^7这种都是算缺项的。缺项就用比较审敛法。交错级数缺项的情况比较少,但是也有,遇到后就当幂级数缺项处理。幂级数也可以叫交错级数,一般都叫交错级数,这样更具体,需要了解的是交错级数∈幂级数;收敛半径和收敛域主要就是一个算R的问题,不带上(-1)^n,因为R=1/ρ=lim(x→)|an/a(n+1)|这里有绝对值,(-1)直接忽略掉。交错级数有专门的判别法,由绝对收敛和条件收敛判断,肯定需要(-1)^n判断的,不能舍弃。扩展资料四则运算1、幂级数的加法在(-R1,R1)和(-R2,R2)中的较小区间内上式成立,收敛半径R=min(R1,R2)。2、幂级数的减法在(-R1,R1)和(-R2,R2)中的较小区间内上式成立,收敛半径R=min(R1,R2)。3、幂级数的乘法在(-R1,R1)和(-R2,R2)中的较小区间内上式成立,收敛半径R=min(R1,R2)。4、幂级数的除法两个幂级数相除的结果仍是幂级数。假设b0不等于0时,在(-R1,R1)和(-R2,R2。
缺项幂级数,rou的求法跟上边一样吧?R也是rou分之一吗?那跟上边有什么区别? 其实不管是不是缺项的幂级数,都是由任意项级数的比值审敛法求得结果的,所以可以直接由比值审敛法,来求收敛半径、区间和收敛域