圆与直线相切的距离公式 圆心坐标为(a,b),直线方程为AX+BY+C=0,则圆与直线相切的距离d=|Aa+Bb+C|/√(A^2+B^2)
如何求椭圆与直线间的最短距离 设一直线与已知直线平行y=kx+m(k为已知直线的斜率)与椭圆相切,即将y=kx+m代入椭圆方程得到关于x的二次方程利用⊿=0就可以求m,然后求二条平行直线之间距离就行了这就是椭圆与直线间的最短距离
怎么求椭圆上一点到直线的距离 用点到直线距离公式 d=∣Ax+By+C∣/√(A2+B2).如果求椭圆上点到直线距离的最大(小)值,可设椭圆上的点为参数形式,即x'=aCOSθ,y=bSinθ,代入d,用三角函数方法求最值.
椭圆上的动点到直线最短距离怎么求 用参数方程2113x2/a2+y2/b2=1则令x=acosθ,y=bsinθ直线mx+ny+p=0则距离是|5261amcosθ+bnsinθ+p|/√(m2+n2)=|√(b2n2+a2m2)*sin(θ+ρ4102)+p|/√(m2+n2)椭圆的参数方程,借助三1653角函数的有界性求得最值;还可利用直线与椭圆的位置关系求最值,当与已知直线平行的直线与椭圆相切时,切点满足到直线的距离取得最值。扩展资料:质的坐标x,y与时间t之间有函数关系x=f(t),y=g(t),这两个函数式中的变量t,相对于表示质点的几何位置的变量x,y来说,就是一个“参与的变量”。这类实际问题中的参变量,被抽象到数学中,就成了参数。用参数方程描述运动规律时,常常比用普通方程更为直接简便。对于解决求最大射程、最大高度、飞行时间或轨迹等一系列问题都比较理想。有些重要但较复杂的曲线(例如圆的渐开线),建立它们的普通方程比较困难,甚至不可能,列出的方程既复杂又不易理解。参考资料来源:-参数方程
怎么求椭圆上一点到直线的距离 用参数方程2113.x=acosθ5261,y=bsinθ椭圆上一点坐标为(acosθ,bsinθ)利用点到直线距离公式,列出一4102个关于θ的三角函数关1653系,用三角函数去算最值在椭圆x216+y29=1上求一点,使它到直线y=x-9的距离最短.根据题意,当与直线y=x-9平行的直线与椭圆相切时,距离最短故可设l方程为:y=x+m代入椭圆x216+y29=1得:25x2+32mx+16m2-144=0 ①0得:(32m)2-4×25×(16m2-144)=0得:m=±5根据题意,取m=-5代入①解得:x=165y=165-5=-95故此点为:(165,-95).
高中数学:求椭圆上一点.该点到椭圆外的一条直线距离最小,除了用点到直线距离公式,还有一种方法是将直线。 方法:若已知直线方程为Ax+By+C1=0,(A,B,C1为常数)1.可设平行于已知直线且与椭圆相切的直线方程为:AX+By+C2=0,(C2为常数)2.联立椭圆方程,消去一个未知数(比如y),得到一个关于x的二次方程;3.令判断式等于0,解出C2的值,(有两个);4.代入关于x的二次方程,求出切点的横坐标,再代入直线方程AX+By+C2=0,求出纵坐标.注:两个解,一个是距离最小的点,一个是距离最大的点.5.若要求出距离,则可用两平行线间的距离公式:d=|C2-C1|/√(A2+B2)
直线与椭圆相交,距离公式 把问题描述清楚
怎么求椭圆上一点到直线的距离 用点到直线距离公式 d=∣Ax+By+C∣/√(A2+B2).如果求知椭圆上点到直道线距离的最大(小)值,可设椭圆上的点为参数形式,即回x'=aCOSθ,y=bSinθ,代入d,用三角答函数方法求最值.