一个方程如何表示两条直线.一个方程如何表示两条直线,一般要哪些条件?
直线方程 一定要记住方向向量是(1,k),这是非常有用的,在有向量法解圆锥曲线时,有用到.此题为(1,tan135度),既是(1,-1),解毕.
直线的方程几种形式教案
直线参数方程如何化成直线标准参数方程 归一化系数即可比如x=x0+at,y=y0+bt可化成标2113准方程:x=x0+pty=y0+qt这里5261p=a/√(a2+b2),q=b/√(a2+b2)扩展资料:参数方程和函数很相4102似:它们都是由一些在1653指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数:并且对于t的每一个允许的取值,由方程组确定的点(x,y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x、y的变数t叫做参变数,简称参数。相对而言,直接给出点坐标间关系的方程叫普通方程。如果函数f(x)及F(x)满足:⑴在闭区间[a,b]上连续;⑵在开区间(a,b)内可导;⑶对任一x∈(a,b),F'(x)≠0。那么在(a,b)内至少有一点ζ,使等式[f(b)-f(a)]/[F(b)-F(a)]=f'(ζ)/F'(ζ)成立。柯西简洁而严格地证明了微积分学基本定理即牛顿-莱布尼茨公式。他利用定积分严格证明了带余项的泰勒公式,还用微分与积分中值定理表示曲边梯形的面积,推导了平面曲线之间图形的面积、曲面面积和立体体积的公式。
高中数学的圆锥曲线部分,怎么利用直线的参数方程解题? 答:利用直线的参数方程的几何意义解题是高中数学中的重要方法之一,它主要用来解决过定点的直线与圆锥曲线相交时的弦长或距离问题,可以避免韦达定理的繁琐计算。一·直线的参数方程二·直线参数方程的简单应用三·直线参数方程的综合应用值得说明的是,四点共圆是高考的常考题型之一,解决四点共圆的方法非常多,诸如直接通过韦达定理转化、通过相交弦定理转化、通过托勒密定理转化、通过直线斜率互为相反数转化等。以上。