ZKX's LAB

温纳装置测深 急..关于电阻率解释深度的问题

2020-10-18知识18

直流激发极化法的原理 在充电和放电过程中,由于电化学作用引起的这种随时间缓慢变化的附加电场现象,称为激发极化效应(IP效应),激发极化法是以不同岩矿石的激电效应之差异为物质基础,通过观测和研究大地激电效应,以探查地下地质情况的一种勘探方法。关于岩石激发极化的成因,存在较多争论,大多数人认为,岩石的激发极化效应与岩石颗粒和周围溶液界面上的双电层有关。基于岩石颗粒-溶液界面上双电层的分散结构和分散区内存在可以沿界面移动的阳离子这一特点,提出关于其产生机理的有代表性的两种假说:一是双电层形变假说,即在外电流作用下,岩石颗粒表面双电层分散区中的阳离子发生移动,形成双电层形变,当外电流断去后,堆积的离子放电,以恢复到平衡状态,从而观测到激发极化电场。双电层形变激发极化形成的速度和放电的快慢,决定于离子沿颗粒表面移动的速度和路径长度,因而较大的岩石颗粒将有较大的时间常数(即充电或放电快慢)。二是薄膜极化假说:简单地说,就是电流流过宽窄不同的空隙时,形成离子浓度变化,当外电流断掉以后,由于离子的扩散作用,离子浓度将逐渐消失,恢复到原来的状态,与此同时形成扩散电位,这便是离子导体上观测到的激发极化。进一步的研究表明,。

温纳装置测深 急..关于电阻率解释深度的问题

急..关于电阻率解释深度的问题 土壤的电阻率一般只能用视电阻率计算表示,我不知道理解得对不对,一般高密度电法是ρs=K⊿U/I,K是根据具体情况定,⊿U是供电电极的电压,I是仪器提供的测量电流,你说的“四机等距法”我不清楚是不是温纳法的意思,如果是的话可以直接用这个公式算 K=2naл ρ=2лna⊿U/In是间隔系数,a是相邻两电极间距.

温纳装置测深 急..关于电阻率解释深度的问题

装置的选择 原则上讲,激发极化法可采用电阻率法中的各种装置,但这些装置在激电法中应用的广泛程度及承担的地质任务均有所不同。故应按电法工作的地质任务、工区地电条件及激电法本身的特点,合理地选择观测装置。现对激电法中几种常用装置的特点和效能作些对比性讨论,以供选择装置参考。3.4.4.1 中间梯度装置中梯装置的一个主要优点,是敷设一次供电导线和供电电极A、B,便能在相当大的面积上测量,特别是还能用几台“远点启动”的接收机同时在该面积上观测,因而具有较高的生产效率。此外,它在A、B间的中间地段测量,接近水平的极化条件,故对各种形状、产状和相对导电性的极化体均可得到相当大的异常;且异常形态较简单,易于解释。中间梯度可采用纵向装置,也可采用横向装置。中梯装置的特点是电极距较大,要求大供电电流,且电磁耦合干扰较强。但在时间域观测中选用几百毫秒或更长的延时,可有效地降低这种干扰。故在直流激电法中,中梯装置应用最广。3.4.4.2 偶极装置偶极装置的激电异常幅度较大,对覆盖层的穿透能力较强。在采用多个偶极间隔系数工作时,兼有剖面法和测深法双重性质,对极化体形状和产状的分辨能力较强。此外,在各种电极装置中,这种装置电磁耦合。

温纳装置测深 急..关于电阻率解释深度的问题

物探技术中温纳装置与施伦贝尔装置具体定义是什么? 施伦贝尔1装置方式(SB1)该装置的测量方式是测深测量,测量时,M、N保持不动,A、B同时逐点分别向左、向右移动,得到一条滚动扫描测量线,然后A、M、N、B同时向右移动一个电极,再按照同样的方式跑极,得到另一条滚动扫描测量线。所得断面为矩形(跑极方式见图2)图2施伦贝尔1装置跑极方式设测线上共有m个电极,隔离系数为n,则对应于每一层位(n)的测量数据个数为:m?n×2?1;每层的数据量一样,数据总数为:S=n×(m?n×2?1)2.3温施1装置方式(WS1)此装置的测量方式是测深测量,它是温纳和施伦贝尔的结合,在整条剖面测量中MN要由小到大变化几次,但在MN为某一固定值时,A、B按施伦贝尔1的方式移动。当温施间隔选择一固定值a时,则M、N间的间距每隔a层增加两个电极距,即M、N间的间距按1、3、5、7…等间隔增加,A和M、N和B之间的电极距也按照隔离系数由小到大的顺序等间隔增加。所得断面为矩形(跑极方式见图3)图3温施1装置跑极方式设测线上共有m个电极,隔离系数为n,则对应于每一层位(n)的测量数据个数为:m?n×2?1;每层的数据量一样,数据总数也满足公式:S=n×(m?n×2?1)

点源二维有限元法的应用 与赫姆霍兹方程对应的二维有限元法在电法勘探中有较广的使用范围,有重要的意义。对电阻率法,用点源二维有限元方法对不同的情况进行了试算和应用,取得了较好的效果。9.6.1 理论对比图9.19中示出了二层介质时偶极测深装置有限元法计算的视电阻率ρs曲线与理论曲线的对比,图中实线为理论曲线,黑点为计算结果,地电断面和装置均附在图中。由图可见,计算值与理论值符合很好,计算误差在1%以内。图9.19 二层ρs偶极测深曲线图9.20示出了对两种不同电阻率介质的垂直接触带上偶极测深视电阻率ρs曲线的计算结果,与理论曲线对比,计算误差在2%以内。图中实线为理论曲线,黑点为计算结果。图9.20 垂直接触带ρs偶极测深曲线9.6.2 模型试算结果为检验前述算法,对大地水平,即在没有地形影响的情况下,设置了以下几种模型(图9.21、图9.22、图9.23、图9.24),每个模型的参数标注在模型下,采用对称四极测深和温纳装置进行了试算。其中对以上设计的前三种模型都采用对称四极斯伦贝尔装置,其最大电极距为25m,最小电极距为1m。后一种模型采用温纳装置,最大电极距为24m,最小电极距为1.5m。试算的结果如图所示。模型1:设计了三层,第一层和第三层的电阻率都是100Ω。

-D电阻率法勘探的局限 电阻率法勘探起源于20世纪20年代斯伦贝格(Schlumberger)兄弟的研究和开展的工作,大约60年后,定量解释、传统的电测深法(Koefoed,1979)才得以广泛应用,此时,电极排列的中点仍然是固定的,但是,随着电极距的增加,可获得地下更为丰富的信息,这就是1-D电法勘探。1-D电阻率法勘探包括两方面内容:电阻率剖面法和电阻率测深法。图1.9 一个电阻率剖面法探测例子(1)电阻率剖面法电阻率剖面法就是供电电极和测量电极保持一定距离,沿着测线方向逐点进行观测,获得视电阻率值的变化规律,以此反映一定深度范围内地层的电性沿横向变化情况,但该方法不能获得电性垂向变化情况。图1.9是一个电阻率剖面法探测例子,从探测结果来看,没有深度信息,仅有横向上地质体的电性变化信息。(2)电阻率测深法电阻率测深法可得到某一点处垂直方向由浅到深地质情况的视电阻率变化情况。该方法是在地面上以测点为中心,由近到远逐渐增加观测装置距离进行测量,根据视电阻率随极距的变化可划分出不同的电性层,了解其垂向分布情况,同时计算其埋深及厚度。它是在地面的一个测深点上(即P1P2极的中点),通过逐次加大供电电极C1C2极距的大小,测量同一点的、不同C1C2极距的视。

#极化曲线#电阻率

随机阅读

qrcode
访问手机版