能否说正切函数在其定义域内是单调增函数? 1,单调递增只是针对单个连zhidao续区间而言的,所以,“y=tanx在其定义域内单调递增”是不准确的。2,“y=tanx在其定义域内单调递增”固然不准确,但是,又找不到比此描述内更好的。3,可行的描述如下:y=tanx的定义域由无数个诸如(2kπ-π/2,2kπ+π/2)之类的区间组容成,其在每个区间上单调递增。4,偶上学时向数学老师请教过此问题,未果。
函数y=tanx,在其定义域内单调递增对吗? 分情况讨论:当x∈(-п/2+kп,]时讨论一次 x∈(kп,п/2+kп)讨论一次 得:定义与域x≠kп+2 周期п 单调递增区间:(kп,п/2+kп)所以不对 此说法错误。。
y=tanx的定义域是:{x|x≠kπ+π/2,k∈Z}值域是:R最小正周期是:T=π奇偶性:是奇函数单调增区间:(kπ-π/2,kπ+π/2)(k∈Z)单调减区间:无对称轴:无对称中心:(kπ/2,0)(k∈Z)函数y=tanx的反函数。计算方法:设两锐角分别为A,B,则有下列表示:若tanA=1.9/5,则 A=arctan1.9/5;若tanB=5/1.9,则B=arctan5/1.9。如果求具体的角度可以查表或使用计算机计算。扩展资料:正切函数y=tanx在开区间(x∈(-π/2,π/2))的反函数,记作y=arctanx 或 y=tan?1x,叫做反正切函数。它表示(-π/2,π/2)上正切值等于 x 的那个唯一确定的角,即tan(arctan x)=x,反正切函数的定义域为R即(-∞,+∞)。反正切函数是反三角函数的一种。由于正切函数y=tanx在定义域R上不具有一一对应的关系,所以不存在反函数。注意这里选取是正切函数的一个单调区间。而由于正切函数在开区间(-π/2,π/2)中是单调连续的,因此,反正切函数是存在且唯一确定的。反正切函数显然与函数y=tanx,(x∈R)关于直线y=x对称,且渐近线为y=π/2和y=-π/2。参考资料来源:—反正切函数
函数y=tanx,在其定义域内单调递增对吗?祥细点就采纳 不对吧,这个函数定义域是x不等于π/2+kπ在每一段(-π/2+kπ,π/2+kπ)里面,可以说是单调递增,但不能说在其定义。
函数y=tanx,在其定义域内单调递增对吗? 分情况讨论:当x∈(-п/2+kп,]时讨论一次x∈(kп,п/2+kп)讨论一次得:定义与域x≠kп+2周期п单调递增区间:(kп,п/2+kп)所以不对
y=-1/x与y=tanx在定义域里是不是都是单调增加的?(最好说明理由) y=-1/x的图像是一对双曲线它在(-无穷,0)和(0,+无穷)内分别单调递增。但由于它的图像不联系,故阐述时要在两个定义域内分开说。第二个,这是个基本函数,你应该掌握它。
给出下列说法: ②④①正切函数在定义域内不具有单调性,故错误;②由 k π-π+(k∈Z),解得 x∈(k∈Z),故正确;③由2 x+≠+k π(k∈Z),解得 x≠(k∈Z),故错误;④因为函数 y=tan x+1在 上单调递增,所以 x=时取得最大值为+1,x=-时取得最小值为0,故正确,所以正确说法是②④.