ZKX's LAB

直线方程的教学过程和 什么是方程?什么是方程,如何解.(要例题,要过程.)小学四年级.

2020-10-16知识36

直线方程的点斜式、斜截式、两点式和截距式 最低0.27元/天开通文库会员,可在文库查看完整内容>;原发布者:xupeisen112Array一、教学目标(一)知识教学点在直角坐标平面内,已知直线上一点和直线的斜率或已知直线上两点,会求直线的方程;给出直线的点斜式方程,能观察直线的斜率和直线经过的定点;能化直线方程成截距式,并利用直线的截距式作直线.(二)能力训练点通过直线的点斜式方程向斜截式方程的过渡、两点式方程向截距式方程的过渡,训练学生由一般到特殊e799bee5baa6e79fa5e98193e78988e69d8331333433623736的处理问题方法;通过直线的方程特征观察直线的位置特征,培养学生的数形结合能力.(三)学科渗透点通过直线方程的几种形式培养学生的美学意识.二、教材分析1.重点:由于斜截式方程是点斜式方程的特殊情况,截距式方程是两点式方程的特殊情况,教学重点应放在推导直线的斜截式方程和两点式方程上.2.难点:在推导出直线的点斜式方程后,说明得到的就是直线的方程,即直线上每个点的坐标都是方程的解;反过来,以这个方程的解为坐标的点在直线上.的坐标不满足这个方程,但化为y-y1=k(x-x1)后,点P1的坐标满足方程.三、活动设计分析、启发、诱导、讲练结合.四、教学过程(一)点斜式已知直线l的斜率是k。

直线方程的教学过程和 什么是方程?什么是方程,如何解.(要例题,要过程.)小学四年级.

高等数学入门——空间直线方程的几种常见形式

直线方程的教学过程和 什么是方程?什么是方程,如何解.(要例题,要过程.)小学四年级.

求直线关于直线对称的直线方程的解法步骤 直线关于直线的对称问题直线关于直线对称问题,包含有两种情形:①两直线平行,②两直线相交.对于①,我们可转化为点关于直线的对称问题去求解;对于②,其一般解法为先求交点,再用“到角”,或是转化为点关于直线对称问题.下面是两道例题总结:(1)一般的,求与直线ax+by+c=0关于x=a0对称的直线方程,先写成a(x-a0)+by+c+aa0=0的形式,再写成a(a0-x)+by+c+aa0=0形式,化简后即是所求值.(2)一般的,求与直线ax+by+c=0关于y=b0对称的直线方程,先写成ax+b(y-b0)+c+bb0=0的形式,再写ax+b(b0-y)+c+bb0=0成形式,化简后即是的求值.(3)一般的,求与直线ax+by+c=0关于原点对称的直线方程,只需把x换成-x,把y换成-y,化简后即为所求.(4)一般地直(曲)线f(x,y)=0关于直线y=x+c的对称直(曲)线为f(y-c,x+c)=0.即把f(x,y)=0中的x换成y-c、y换成x+c即可.(5)一般地直(曲)线f(x,y)=0关于直线y=-x+c的对称直(曲)线为f(-y+c,-x+c).即把f(x,y)=0中的x换成-y+c,y换成-x+c.很高兴为你解答,

直线方程的教学过程和 什么是方程?什么是方程,如何解.(要例题,要过程.)小学四年级.

什么是方程?什么是方程,如何解.(要例题,要过程.)小学四年级.什么是方程?什么是方程,如何解.(要例题,要过程.)小学四年级.方程 含有未知数的等式叫方程。.

回归直线法公式快速记忆法(一元一次方程),财务管理等学科会涉及到回归直线法公式,这是一个看似复杂的公式,但是可以用简单口诀记忆

直线与方程的直线与方程 教学目标:知识与技能(1)正确理解直线的倾斜角和斜率的概念.(2)理解直线的倾斜角的唯一性.(3)理解直线的斜率的存在性.(4)斜率公式的推导过程,(5)掌握过两点的直线的斜率公式.情感态度与价值观(1)通过直线的倾斜角概念的引入学习和直线倾斜角与斜率关系的揭示,培养学生观察、探索能力,运用数学语言表达能力,数学交流与评价能力.(2)通过斜率概念的建立和斜率公式的推导,帮助学生进一步理解数形结合思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.重点与难点:直线的倾斜角、斜率的概念和公式.教学用具:计算机教学方法:启发、引导、讨论.教学过程:(一)直线的倾斜角的概念我们知道,经过两点有且只有(确定)一条直线.那么,经过一点P的直线l的位置能确定吗?如图,过一点P可以作无数多条直线a,b,c,显而易见,答案是否定的.这些直线有什么联系呢?(1)它们都经过点P.(2)它们的‘倾斜程度’不同.怎样描述这种‘倾斜程度’的不同?引入直线的倾斜角的概念:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时,规定α=0°.问:倾斜角α的取值范围是。

高二数学 直线方程求答案和过程

#数学#直线方程#曲线斜率#直线的斜率

随机阅读

qrcode
访问手机版