常见随机变量的分布中,数学期望和方差一定相等的分布是 泊松分布,分布列为(p^k)*exp(-p)/k。k=0,1 2,….数学期望和方差均为p
数学期望和方差的关系? 方差2113=E(x2)-E(x)2,E(X)是数学期望5261。在概率论和统计学中,数学期望(mean)(或均值,亦简称期4102望)是试验中每1653次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。方差在概率论和统计学中,一个随机变量的方差描述的是它的离散程度,也就是该变量离其期望值的距离。一个实随机变量的方差也称为它的二阶矩或二阶中心动差,恰巧也是它的二阶累积量。这就是将各个误差将之平方,相加之后再除以总数,透过这样的方式来算出各个数据分布、零散的程度。扩展资料:期望值像是随机试验在同样的机会下重复多次,所有那些可能状态平均的结果,便基本上等同“期望值”所期望的数。期望值可能与每一个结果都不相等。换句话说,期望值是该变量输出值的加权平均。期望值并不一定包含于其分布值域,也并不一定等于值域平均值。赌博是期望值的一种常见应用。例如,美国的轮盘中常用的轮盘上有38个数字,每一个数字被选中的概率都是相等的。赌注一般押在其中某一个数字上,如果轮盘的输出值和这个数字相等,那么下赌者可以获得相当于赌注35倍的奖金(原注不包含在内),若输出值和下压数字不同,则赌注就输掉了。考虑到38种。
数学期望与方差 急 根据题意可知X的可能取值是0,1,2,3P(X=0)=1/2P(X=1)=(1/2)^2P(X=2)=(1/2)^3P(X=3)=(1/2)^3所以汽车首次遇到红绿灯前已经通过的路口数X的概率分布是:X 0 1 2 3P 1/2 1/4 1/8 1/8期望E(X)=0*(1/2)+1*(1/4)+2*(1/8)+3*.
随机变量序列如果具有相同的数学期望和方差 可否断定它们就是同分布的呢? 不可以期望和方差相同的太多了.完全不是一回事反之,同分布则期望方差相同成立