点到直线的距离公式是什么?以及推导过程 还有很多方法,这是简单的一种
点到直线距离公式推导过程
如何推导点到直线间的距离公式? 假设直线L0为:AX+BY+C=0,平面上非在线上的任意一点为M(X0,Y0)过点M作垂直于L0的直线L1交L0于点N(X1,Y1),点M到直线L0的距离即为线段MN的长度则有:L1的直线方程为:Y-Y0=-1/A*(X-X0),且有X-X0/Y-Y0=-1/A联立L1与L.
1.点到直线的距离是怎么推导出来这个公式的?我想了解下推导出这个公式的思路; 点M到直线的距离,即过点M向已知直线作垂线,设垂足为N,则垂线段MN的长即是所求的点到直线的距离.但如何求此线段的长呢?同学们给出了不同的解决方法.方法一:求出过点M且与已知直线aX+bY+c=0(a、b均不为零)垂直的直.
点到直线的距离公式如何推导? 设:直线方程y=ax+b 点的坐标(p,q)考虑到要求点到直线的距离,与过该点与已知直线垂直的直线重合,所以先求过已知点与已知直线垂直的直线方程:y=(-1/k)x+(p/k+q)联立两方程求得交点坐标,然后再用平面间两点距离公式求距离.