ZKX's LAB

用C#编写一段代码,实现欧拉格式和龙格库塔格式。这里有一段C语言的代码,怎么改写成C#? 改进的欧拉格式龙格库塔

2020-10-14知识11

二阶龙格库塔方法 最低0.27元开通文库会员,查看完整内容>;原发布者:龙吟太虚2012-2013(1)专业课程实践论文二阶Runge-Kutta方法董文峰,0818180123,R数学08-1班一、算法理论由改进的Euler方法得到:凡满足条件式有一簇形如上式的计算格式,这些格式统称为二阶龙格—库塔格式。因此改进的欧拉格式是众多的二阶龙格—库塔法中的一种特殊格式。若取,就是另一种形式的二阶龙格-库塔公式。(1)此计算公式称为变形的二阶龙格—库塔法。二级龙格-库塔方法是显式单步式,每前进一步需要计算两个函数值。由上面的讨论可知,适当选择四个参数y0,a,b,n,可使每步计算两次函数值的二阶龙格-库塔方法达到二阶精度。下面以式子(1)为依据利用VC+6.0编译程序进行问题的求解。二、算法框图三、算法程序#include#include/*n表示几等分,n+1表示他输出的个数*/intRungeKutta(doubley0,doublea,doubleb,intn,double*x,double*y,double(*function)(double,double)){doubleh=(b-a)/n,k1,k2;inti;x[0]=a;y[0]=y0;for(i=0;i;i+){x[i+1]=x[i]+h;k1=function(x[i],y[i]);k2=function(x[i]+h/2,y[i]+h*k1/2);y[i+1]=y[i]+h*k2;}return1;}doublefunction(doublex,doubley){returny-2*x/y;}intmain(){inti;doublex[6],y。

用C#编写一段代码,实现欧拉格式和龙格库塔格式。这里有一段C语言的代码,怎么改写成C#? 改进的欧拉格式龙格库塔

求数值分析大神解题? 有问题,上知乎。知乎,可信赖的问答社区,以让每个人高效获得可信赖的解答为使命。知乎凭借认真、专业和友善的社区氛围,结构化、易获得的优质内容,基于问答的内容生产。

用C#编写一段代码,实现欧拉格式和龙格库塔格式。这里有一段C语言的代码,怎么改写成C#? 改进的欧拉格式龙格库塔

从欧拉方法、改进欧拉方法、2阶龙格-库塔方法、4阶龙格-库塔方法中选择一种方法,每一步从精确解出发计算出下一 欧拉方法 ;nbsp;yn+1=yn+h·f(xn,yn),xn=x0+n·h. ;nbsp;改进欧拉方法 ;nbsp;nbsp;nbsp;nbsp;nbsp;2阶龙格-库塔方法 ;nbsp;yn+1=yn+hk2,k1=f(xn,yn)。

用C#编写一段代码,实现欧拉格式和龙格库塔格式。这里有一段C语言的代码,怎么改写成C#? 改进的欧拉格式龙格库塔

用C#编写一段代码,实现欧拉格式和龙格库塔格式。这里有一段C语言的代码,怎么改写成C#? 直接粘过去就行了…只需要把2.0改成2或者(float)2.0就行了

用改进Euler方法和四阶龙格-库塔法求初值问题 龙格-库塔(Runge-Kutta)法到目前为止,我们已经学习了多步法,例如:亚当斯-巴什福思(Adams-Bashorth)法,亚当斯-莫尔顿(Adams-Monlton)法,都是常微分。

欧拉法,改进欧拉法的一阶微分方程组迭代格式.. 随便找本数值分析或者计算方法的书上都有

分别用改进的欧拉法和四阶龙格-库塔公式求解微分方程初值问题 分别用改进的欧拉法和四阶龙格-库塔公式求解微分方程初值问题(1)Y'=Y-2X/Y,Y(0)=1,X=[0,1],H=0.1(2)Y'=X2+。

哪位大哥能帮我找到关于“龙格库塔方法”方面的文字说明啊?越详细越好。 龙格-库塔(Runge-Kutta)法到目前为止,我们已经学习了多步法,例如:亚当斯-巴什福思(AdamsBashorth)法,亚当斯-莫尔顿(Adams-Monlton)法,都是常微分方程的积分方法。它们需要在每一次迭代时重新计算一遍等式右边的结果(非线性隐含问题忽略计算多个 f(ω)值的可能性)龙格-库塔(Runge-Kutta)法是一种不同的处理,作为多级方法为人们所知。它要求对于一个简单的校正计算多个 f 的值。下面,我们列出了 3 种最流行的龙格-库塔(Runge-Kutta)法:改进的欧拉方法(精度:p=2):V a=V n+Δtf(V n,tn)2Δt)二阶格式V n+1=V n+Δtf(V a,tn+2Hevn’s 方法(p=2):这是另一种二阶格式:V a=V n+Δtf(V n,tn)V n=V n+1 Δt[f(V n,tn)+f(V a,tn+Δt)]2注意:f(Vn,tn)在运算中应该只被计算一次。四次龙格-库塔(Runge-Kutta)法(p=4):这是一个 4 阶格式。这次我们写的形式有点不同:a=Δtf(V n,tn)b=Δtf(V n+1 a,tn+12 2 Δt)c=Δtf(V n+1 b,tn+Δt)12 2d=Δtf(V n+c,tn+Δt)V n=V n+1 1(a+2b+2c+d)。6

用二阶龙格库塔法求解常微分方程的初值问题。 你好,请搜索”VisualC+常微分方程初值问题求解“可以找到相关资料例如:三、使用经典龙格-库塔算法进行高精度求解 龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。由于此算法精度高,采取措施对误差进行抑制,所以其实现原理也较复杂。同前几种算法一样,该算法也是构建在数学支持的基础之上的。对于一阶精度的欧拉公式有:yi+1=yi+h*K1 K1=f(xi,yi)当用点xi处的斜率近似值K1与右端点xi+1处的斜率K2的算术平均值作为平均斜率K*的近似值,那么就会得到二阶精度的改进欧拉公式:yi+1=yi+h*(K1+K2)/2 K1=f(xi,yi)K2=f(xi+h,yi+h*K1)下面的具体程序实现同改进的欧拉算法类似,只需作些必要的改动,下面将该算法的关键部分代码清单列出:…for(floatx=0;x;x+0.1){r=x+expf(-x);K1=x-y[i]+1;file:/求K1K2=(x+(float)(0.1/2))-(y[i]+K1*(float)(0.1/2))+1;file:/求K2K3=(x+(float)(0.1/2))-(y[i]+K2*(float)(0.1/2))+1;file:/求K3K4=(x+0.1)-(y[i]+K3*0.1)+1;file:/求K4y[i+1]=y[i]+(float)(0.1*(K1+2*K2+2*K3+K4)/6);file:/求yi+1r=fabs(r-y[i]);file:/计算误差str.Format(\"y[%d]=fr=f\\r\\n\",i,y[i],r);i+;msg+str;}AfxMessageBox(msg);file:/。

#龙格库塔法#欧拉法

随机阅读

qrcode
访问手机版