细胞液中的NADH是如何进入线粒体氧化生成水的? 在真核细胞中,NADH进入线粒体有两个穿梭系统:(一)磷酸甘油穿梭系统胞液中的NADH在两种不同的α-磷酸甘油脱氢酶的催化下,以α-磷酸甘油为载体穿梭往返于胞液和线粒体之间,间接转变为线粒体内膜上的FADH2而进入呼吸链。这种过程称为磷酸甘油穿梭。详细解释一下。在线粒体外的胞液中,糖酵解产生的磷酸二羟丙酮和NADH+H+,在以NAD+为辅酶的α-磷酸甘油脱氢酶的催化下,生成α-磷酸甘油。α-磷酸甘油可扩散到线粒体内,再由线粒体内膜上的以FAD为辅基的α-磷酸甘油脱氢酶(一种黄素脱氢酶)催化,重新生成磷酸二羟丙酮和FADH2。前者穿出线粒体返回胞液,后者FADH2将2H传递给CoQ,进入呼吸链,最后传递给分子氧生成水并形成ATP。由于此呼吸链和琥珀酸的氧化相似,越过了第一个偶联部位,因此胞液中NADH+H+中的两个氢被呼吸链氧化时就只形成2分子ATP,比线粒体中NADH+H+的氧化少产生1分子ATP,也就是说经过这个穿梭过程每转一圈要消耗1个ATP。电子传递之所以要用FAD作为电子受体,是因为线粒体内NADH的浓度比细胞质中的高,如果线粒体和细胞质中的α-磷酸甘油脱氢酶都与NAD+连接,则电子就不能进入线粒体。利用FAD能使电子逆着NADH+H+梯度而从细胞质转移到线粒体中。
ATP的生成、储存和利用
能在细胞内的溶液中进行的化学反应 A葡萄糖酵解时葡萄糖变成6-磷酸葡萄糖就是在胞液中进行的B C 都在线粒体中D不清楚,但是可以肯定A
胞液中1分子NADH通过苹果酸-天冬氨酸穿梭后进行氧化磷酸化,可产生多少个ATPA.0B.1C.2D.3E.4 正确答案:D
氧化磷酸化 意义 氧化磷酸化(oxidative phosphorylation)是指在生物氧化中伴随着ATP生成的作用。有代谢物连接的磷酸化和呼吸链连接的磷酸化两种类型。即ATP生成方式有两种。一种是代谢物脱氢后,分子内部能量重新分布,使无机磷酸酯化先形成一个高能中间代谢物,促使ADP变成ATP。这称为底物水平磷酸化。如3-磷酸甘油醛氧化生成1,3-二磷酸甘油酸,再降解为3-磷酸甘油酸。另一种是在呼吸链电子传递过程中偶联ATP的生成。生物体内95%的ATP来自这种方式。另外2.偶联部位:根据实验测定氧的消耗量与ATP的生成数之间的关系以及计算氧化还原反应中ΔGO’和电极电位差ΔE的关系可以证明。P/O比值是指代谢物氧化时每消耗1摩尔氧原子所消耗的无机磷原子的摩尔数,即合成ATP的摩尔数。实验表明,NADH在呼吸链被氧化为水时的P/O值约等于3,即生成3分子ATP;FADH2氧化的P/O值约等于2,即生成2分子ATP。氧-还电势沿呼吸链的变化是每一步自由能变化的量度。根据ΔGO’=-nFΔE O’(n是电子传递数,F是法拉第常数),从NADH到Q段电位差约0.36V,从Q到Cytc为0.21V,从aa3到分子氧为0.53V,计算出相应的ΔGO’分别为69.5、40.5、102.3kJ/mol。于是普遍认为下述3个部位就是电子传递链中产生ATP的部位。。
下列哪种反应场所是在胞液中进行?A 三羧酸循环 B氧化磷酸化 C 糖酵解 D β-氧化
胞液中的NADPH是怎样进入线粒体的,生成的ATP是多少? 楼主问的是NADH吧,NADH苹果酸-天冬氨酸途径的话是2.5ATP.主要存在于肝和心肌。另一种是a-磷酸甘油途径,主要存在于脑和骨骼肌。产生1.5ATP.距离物质转换不容易说清楚,你。
胞质中的NADH是如何参与氧化磷酸化过程的? 线粒体内生成的NADH可直接参加氧化磷酸化,但泡液中的不能自由透过线粒体内膜,所以,线粒体外NADH所携带的氢必须要通过某种转运机制才能进入线粒体,然后再经呼吸链进入。
胞液中的NADH经苹果酸穿梭进入线粒体进行氧化磷酸化,其P/O值为 B