柯西分布的数学期望和方差为什么不存在? 柯西分布是连续型的,对连续型随机变量来说,数学期望的定义是这样的:设X是一个连续型随机变量,f(x)是其概率密度,若xf(x)在负无穷到正无穷上的广义积分是绝对收敛的,则称此积分值为随机变量X的数学期望,记为E(X).对柯.
数学期望为0跟概率密度函数的奇偶性有什么关系 概率密度函数是偶函数是数学期望为0的充分非必要条件。已知数学期望公式∫xf(x)dx=0如果概率密度函数f(x)上是偶函数,则xf(x)是奇函数,根据奇函数在对称区间上的定积分为0,那么数学期望为0,但反过来不一定成立。扩展资料:数学期望的应用:经济决策:假设某一超市出售的某种商品,每周的需求量X在10至30范围内等可能取值,该商品的进货量也在10至30范围内等可能取值(每周只进一次货)超市每销售一单位商品可获利500元,若供大于求,则削价处理,每处理一单位商品亏损100元;若供不应求,可从其他超市调拨,此时超市商品可获利300元。试计算进货量多少时,超市可获得最佳利润?并求出最大利润的期望值。分析:由于该商品的需求量(销售量)X是一个随机变量,它在区间[10,30]上均匀分布,而销售该商品的利润值Y也是随机变量,它是X的函数,称为随机变量的函数。题中所涉及的最佳利润只能是利润的数学期望(即平均利润的最大值e69da5e6ba90e799bee5baa6e997aee7ad9431333431373861)。因此,本问题的解算过程是先确定Y与X的函数关系,再求出Y的期望E(Y)。最后利用极值法求出E(Y)的极大值点及最大值。体育比赛问题:乒乓球是我们的国球,上世纪兵兵球也为中国带。
数学期望在什么情况下不存在呢?离散型随机变量X取可列个值时,它的数学期望要求级数∑|xi|pi收敛,否则数学期望不存在;连续型随机变量若在无限区间上取值,其数学期望是。