ZKX's LAB

欧拉法和龙格库塔法的优缺点 流体力学中拉格朗日法和欧拉法有什么不同

2020-10-14知识15

在欧拉法中,加速度可以分别为当地加速度和时变加速度对吗? 不对,当地加速度就是时变加速度。正确的说法应该是欧拉法中加速度可以分解为时变加速度(又名当地加速度)和位变加速度(又名迁移加速度)。欧拉法中质点的加速度(流速对时间求导)由两部分组成:(1)时变加速度(当地加速度)(localacceleration)—流动过程中流体由于速度随时间变化而引起的加速度;(2)位变加速度(迁移加速度)(connectiveacceleration)—流动过程中流体由于速度随位置变化而引起的加速度。

欧拉法和龙格库塔法的优缺点 流体力学中拉格朗日法和欧拉法有什么不同

流体力学中拉格朗日法和欧拉法有什么不同 1、含义上2113的区别拉格朗日法,5261又称随体法,跟随流体质点运4102动,记录该质点在运1653动过程中物理量随时间变化规律。欧拉法,又称流场法,是以流体质点流经流场中各空间点的运动即以流场作为描述对象研究流动的方法。2、特性上的区别拉格朗日法基本特点是追踪流体质点,以某一起始时刻每个质点的坐标位置,作为该质点的标志。欧拉法的特点是单步,显式,一阶求导精度,截断误差为二阶。基本思想是迭代,逐次替代,最后求出所要求的解,并达到一定的精度。3、作用上的区别拉格朗日法可直接运用固体力学中质点动力学进行分析,综合所有质点的运动,构成整个流体的运动。欧拉法简单地取切线的端点作为下一步的起点进行计算,当步数增多时,误差会因积累而越来越大。因此欧拉格式一般不用于实际计算。采用区间两端的函数值的平均值作为直线方程的斜率,改进欧拉法的精度。参考资料来源:-拉格朗日法参考资料来源:-欧拉法

欧拉法和龙格库塔法的优缺点 流体力学中拉格朗日法和欧拉法有什么不同

matlab 里面 powergui选项中simulation type中三个选项什么区别 phashor continuous discrete 尤其是continuous,计算机就是计算机,根本不可能是连续的,怎么会有。

欧拉法和龙格库塔法的优缺点 流体力学中拉格朗日法和欧拉法有什么不同

用二阶龙格库塔法求解常微分方程的初值问题。 你好,请搜索”VisualC+常微分方程初值问题求解“可以找到相关资料例如:三、使用经典龙格-库塔算法进行高精度求解 龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。由于此算法精度高,采取措施对误差进行抑制,所以其实现原理也较复杂。同前几种算法一样,该算法也是构建在数学支持的基础之上的。对于一阶精度的欧拉公式有:yi+1=yi+h*K1 K1=f(xi,yi)当用点xi处的斜率近似值K1与右端点xi+1处的斜率K2的算术平均值作为平均斜率K*的近似值,那么就会得到二阶精度的改进欧拉公式:yi+1=yi+h*(K1+K2)/2 K1=f(xi,yi)K2=f(xi+h,yi+h*K1)下面的具体程序实现同改进的欧拉算法类似,只需作些必要的改动,下面将该算法的关键部分代码清单列出:…for(floatx=0;x;x+0.1){r=x+expf(-x);K1=x-y[i]+1;file:/求K1K2=(x+(float)(0.1/2))-(y[i]+K1*(float)(0.1/2))+1;file:/求K2K3=(x+(float)(0.1/2))-(y[i]+K2*(float)(0.1/2))+1;file:/求K3K4=(x+0.1)-(y[i]+K3*0.1)+1;file:/求K4y[i+1]=y[i]+(float)(0.1*(K1+2*K2+2*K3+K4)/6);file:/求yi+1r=fabs(r-y[i]);file:/计算误差str.Format(\"y[%d]=fr=f\\r\\n\",i,y[i],r);i+;msg+str;}AfxMessageBox(msg);file:/。

MATLAB中已知系统微分方程及初始值用欧拉法和龙格库塔法解一阶微分方程 function Euler欧拉法和龙格库塔算法解一阶常微分方程源代码例子dy/dx=-y+x+1f=inline('-y+x+1','x','y');微分方程的右边项dx=0.5;x方向步长xleft=0;区域的左边界xright=10;区域的右边界xx=xleft:dx:xright;一系列离散的点n=length(xx);点的个数y0=1;(1)欧拉法Euler=y0;for i=2:nEuler(i)=Euler(i-1)+dx*f(xx(i-1),Euler(i-1));end(2)龙格库塔法RK=y0;for i=2:nk1=f(xx(i-1),RK(i-1));k2=f(xx(i-1)+dx/2,RK(i-1)+k1*dx/2);k3=f(xx(i-1)+dx/2,RK(i-1)+k2*dx/2);k4=f(xx(i-1)+dx,RK(i-1)+k3*dx);RK(i)=RK(i-1)+dx*(k1+2*k2+2*k3+k4)/6;endEuler和Rk法结果比较plot(xx,Euler,xx,RK)hold on精确解用作图syms xrightsolve=dsolve('Dy=-y+x+1','y(0)=1','x');求出解析解rightdata=subs(rightsolve,xx);将xx代入解析解,得到解析解对应的数值plot(xx,rightdata,'r*')legend('Euler','Runge-Kutta','analytic')

#龙格库塔法#加速度#欧拉法

随机阅读

qrcode
访问手机版