ZKX's LAB

函数在定义域内一点连续有三个条件,就是一在X0有定义,二是此点极限存在,三是此点的极限等于此点的函 一个函数在定义域内连续的条件

2020-07-21知识21

函数连续性的定义是什么?如何判定一个函数是连续的? 1.函数连续性的定义:设函数f(x)在点x0的某个邻域内有定义,若 lim(x→x0)f(x)=f(x0),则称f(x)在点x0处连续。若函数f(x)在区间I的每一点都连续,则称f(x)在区间I上连续。2.函数连续必须同时满足三个条件:(1)函数在x0 处有定义;(2)x->;x0时,limf(x)存在;(3)x->;x0时,limf(x)=f(x0)。则初等函数在其定义域内是连续的。扩展资料间断点的定义:间断点是指:在非连续函数y=f(x)中某点处xo处有中断现象,那么,xo就称为函数的不连续点。间断点可以分为无穷间断点和非无穷间断点,在非无穷间断点中,还分可去间断点和跳7a686964616fe58685e5aeb931333366303064跃间断点。如果极限存在就是可去间断点,不存在就是跳跃间断点。1.可去间断点:函数在该点左极限、右极限存在且相等,但不等于该点函数值或函数在该点无定义。如函数y=(x^2-1)/(x-1)在点x=1处。2.跳跃间断点:函数在该点左极限、右极限存在,但不相等。如函数y=|x|/x在点x=0处。3.无穷间断点:函数在该点可以无定义,且左极限、右极限至少有一个不存在,且函数在该点极限为∞。如函数y=tanx在点x=π/2处。4.振荡间断点:函数在该点可以无定义,当自变量趋于该点时,函数值在两个常数间变动无限多次。如。高数题目:1:为什么说\ 1。比如说,y=1/x 在定义域内不连知续,因为x=0是第二类间断点。但是在每个定义区间内是连续的。2。不用想的太复杂,你这样想,道按照这句话的条件,如果函数只在某几点可导,就能推出在整个区间内连续。这版不开玩笑么?或者,掐准定义,函数在此点可导只能推出在此点连续,与其他点一点关系都没有。同样的问题还有“若权函数f(x)在x0点导数大于0,则f(x)在x0的某个邻域内单调递增”。也是错误的。函数在定义域内一点连续有三个条件,就是一在X0有定义,二是此点极限存在,三是此点的极限等于此点的函 函数怎样判断在定义域内是否连续 对定义域内任意一点 都有f(x)=f(x+h)其中h→0在定义域内连续的函数一定是连续函数吗? 一般的,用两个定理:基本初等函数在各自的定义域上连续,当然在定义域的区间上连续。初等函数在各自的定义域的区间上连续。简而言之,初等函数在有定义的区间上都是连续的。所以我们求出定义域就求出了连续区间。复杂的,比如分段函数,注意对分段点处用左右极限知识,讨论其连续性。怎样判断一个函数在其定义域内是连续的? 在起定义域内的任意一点其左极限等于右极限,那么它就是连续的.如何判断分段函数在其定义域内是否连续?有什么条件吗? 求在0 的极限值,(左右极限都存在且相等)求在0的函数值,这两个值一样就是连续的如何判断分段函数在其定义域内是否连续?有什么条件吗? 而在分段点处是否连续,一般用左连续右连续来判断。比如分段点是a,分别求x从a的左侧趋于a和x从a的右侧趋于a的极限,如果都等于f(a),即满足左连续且右连续,所以在a连续,否则不连续追问:那如果左右侧算得的值不等,但是趋向于0,也能算是连续吗?或者能说他是跳跃式间断点吗?回答:上面我说的求断点的值不确切 有时候在断点处是没有意义的 像你给的这个例题在x=0时 sin2x/x就没有意义 这时候很简单 求x=0的时候 sin2x/x的极限值 与下面的式子X=0的时候值 就是K比较 lim(x=0)sin2x/x=k 不就求出来K的值了么 其实判断分段函数在定义域内是否连续就要满足两条 第一 断点处必须有一个确定的值 如题 x=0时 有个确定的值为K 第二 左右极限要相等所有基本初等函数在其定义域内都是连续的,这句话对吗 所有基本初等函2113数在其定义域内都是连续的,这句5261话是对的。连续函4102数的其他性质:1、在某点连续的有限个1653函数经有限次和、差、积、商(分母不为0)运算,结果仍是一个在该点连续的函数。2、连续单调递增(递减)函数的反函数,也连续单调递增(递减)。3、连续函数的复合函数是连续的。4、一个函数在某点连续的充要条件是它在该点左右都连续。扩展资料:连续函数的相关定理:1、闭区间上的连续函数在该区间上一定有界。2、闭区间上的连续函数在该区间上一定能取得最大值和最小值。证明:利用确界原理:非空有上(下)界的点集必有上(下)确界。3、若f(a)=A,f(b)=B,且A≠B。则对A、B之间的任意实数C,在开区间(a,b)上至少有一点c,使f(c)=C。闭区间上的连续函数在该区间上必定取得最大值和最小值之间的一切数值。4、闭区间上的连续函数在该区间上一致连续。所谓一致连续是指,对任意ε>;0(无论其多么小),总存在正数δ,当区间I上任意两个数x1、x2满足|x1-x2|<;δ时,有|f(x1)-f(x2)|<;ε,就称f(x)在I上是一致连续的。

随机阅读

qrcode
访问手机版