ZKX's LAB

组蛋白的修饰影响基因的表达 简述组蛋白都有哪些类型的修饰,其功能分别是什么,具有什么生物学意义

2020-10-13知识6

组蛋白乙酰化对基因调控的作用

组蛋白的修饰影响基因的表达 简述组蛋白都有哪些类型的修饰,其功能分别是什么,具有什么生物学意义

组蛋白修饰的方式 ⒈甲基化组蛋白甲基化是由组蛋白甲基化转移酶(histonemethyl transferase,HMT)完成的。甲基化可发生在组蛋白的赖氨酸和精氨酸残基上,而且赖氨酸残基能够发生单、双、三甲基化,而精氨酸残基能够单、双甲基化,这些不同程度的甲基化极大地增加了组蛋白修饰和调节基因表达的复杂性。甲基化的作用位点在赖氨酸(Lys)、精氨酸(Arg)的侧链N原子上。组蛋白H3的第4、9、27和36位,H4的第20位Lys,H3的第2、l7、26位及H4的第3位Arg都是甲基化的常见位点。研究表明·,组蛋白精氨酸甲基化是一种相对动态的标记,精氨酸甲基化与基因激活相关,而H3和H4精氨酸的甲基化丢失与基因沉默相关。相反,赖氨酸甲基化似乎是基因表达调控中一种较为稳定的标记。例如,H3第4位的赖氨酸残基甲基化与基因激活相关,而第9位和第27位赖氨酸甲基化与基因沉默相关。此外,H4—K20的甲基化与基因沉默相关,H3—K36和H3—K79的甲基化与基因激活有关。但应当注意的是,甲基化个数与基因沉默和激活的程度相关。⒉乙酰化组蛋白乙酰化主要发生在H3、H4的N端比较保守的赖氨酸位置上,是由组蛋白乙酰转移酶和组蛋白去乙酰化酶协调进行。组蛋白乙酰化呈多样性,核小体上有多个位点可提供乙酰化。

组蛋白的修饰影响基因的表达 简述组蛋白都有哪些类型的修饰,其功能分别是什么,具有什么生物学意义

在基因组水平上什么可以导致基因沉默 C.组蛋白或DNA修饰PS:组蛋白修饰又称组蛋白密码,决定着基因的开放与否,DNA修饰就是通过一系列化学加工使DNA结构发生某些改变.如DNA的甲基化等修饰基因,可以沉默或者表达目的基因.他俩都可以在基因组水平上导致基因沉默

组蛋白的修饰影响基因的表达 简述组蛋白都有哪些类型的修饰,其功能分别是什么,具有什么生物学意义

DNA和组蛋白的甲基化或者乙酰基化等修饰信号改变转录活性,那么如果同时存在多种修饰,对转录有何影响? 比如H3K4me是激活转录,H3K9me是抑制转录,那么如果某个基因同时有H3K4me和H3K9me,那么这时候的状态是激…

组蛋白修饰包括哪些?组蛋白修饰如何影响基因的转录调控 基本由三种,乙酰基化,甲基化,糖基化。这里举前两个做例子。核小体由8个组蛋白构成,每个组蛋白有一个侧链N,即一小段多肽。侧链N基本由精氨酸和赖氨酸组成,这两种。

细胞中某个基因的RNA表达水平很低,而蛋白表达正常,这是什么原因 真核生物基因表达调控636f7079e799bee5baa6e997aee7ad9431333363393632与原核生物有很大的差异。原核生物同一群体的每个细胞都和外界环境直接接触,它们主要通过转录调控,。

组蛋白的修饰是怎么样影响基因表达的 在哺乳动物基因组中,组蛋白则可以有很多修饰形式.一个核小体由两个H2A,两个H2B,两个H3,两个H4组成的八聚体和147bp缠绕在外面的DNA组成.组成核小体的组知蛋白的核心部分状态大致是均一的,游离在外的N-端则可以受到各种各样的修饰,包括组蛋白末端的乙酰化,甲基化,磷酸化,泛素化,ADP核糖基化等等道.,这些修饰都会影响基因的转录活性。组蛋白的甲基回化修饰:组蛋白被甲基化的位点是赖氨酸和精氨酸.赖氨酸可以分别被一、二、三甲基化,精氨酸只能被一、二甲基化.在组蛋白H3上,共有5个赖氨酸位点可以被甲基答化修饰.一般来说,组蛋白H3K4的甲基化主要聚集在活跃转录的启动子区域。组蛋白H3K9的甲基化同基因的转录抑制及异染色质有关。EZH2可以甲基化H3K27,导致相关基因的沉默,并且与X-Chromosomeinactivation相关.H3K36的甲基化同基因转录激活相关。

组蛋白的修饰的种类和对基因表达的影响 简单的来说这个问题属于表观遗传学组蛋白的修饰主要有甲基化和乙酰化组蛋白被修饰后会影响染色体的结构及一些DNA序列是否被暴露,从而影响基因的表达Histone acetylation is dynamically regulated by HATs(histone acetyltransferase)and HDACs(histone deacetylases).Histone acetyation is generally correlated with active transcription.Histone methylation is linked to both transcriptional activation and repression.

染色体修饰如何影响基因表达调控 你问的一个问题应该属于表观遗传的问题,简单的来说,你所说的染色体修饰就是在不该表DNA序列的情况下,来调控基因的表达,而这种调控基因表达的方式是可遗传的,这便是表观遗传。其修饰的异常将影响基因结构以及基因表达,导致某些复杂综合症、多因素疾病或癌症。在这里,我找到了一个简要介绍表观遗传机制的文章,希望对你有所帮助。在学习遗传学的时候,我们知道基因结构的改变会引起生物体表现型的改变,而这种改变可以从上代传到下代。然而,近年来的研究表明,现代生物包括人类在内从祖先基因组中所获得的生长、发育和进化信息并不仅仅是基因序列。在基因的序列不发生变化的条件下,基因表达发生的改变也可以是遗传的,导致可遗传的表现型变化。这种表现型变化因没有直接涉及基因的序列信息,因而是“表观”的,称为表观遗传变异,又叫表观遗传修饰。于是,遗传学的研究又开辟了一个新的领域—表观遗传学(epigenetics)。表观遗传学是研究基因型不发生变更的情况下产生的基因表达的可遗传改变的学科。这种改变是细胞内遗传信息以外的其他可遗传物质发生的改变,且这种改变在发育和细胞增殖过程中能稳定传递。表观遗传学研究内容包括DNA甲基化表观遗传、染色质。

简述组蛋白都有哪些类型的修饰,其功能分别是什么,具有什么生物学意义 组蛋白修饰是指组蛋白在相关酶作用下发生甲基化、乙酰化、磷酸化、腺苷酸化、泛素化、ADP核糖基化等修饰的过程。这些修饰都会影响基因的转录活性。一般甲基化与染色体的失活有关。乙酰化一般代表染色质的活性状态,有的组蛋白要先去甲基化,再乙酰化活化。磷酸化(如H1的)一般与细胞周期的状态有关,不能磷酸化,染色体不能进行复制。

随机阅读

qrcode
访问手机版