反比例函数 单调性 反比例函数的定义域为(负无穷,0)并(0,正无穷),单调性可以表示为 在(负无穷,0)单调递减 在(0,正无穷)单调递减
反比例函数Y=1/X的定义域是什么?它在定义域上的单调性是怎样的?证明结论
反比例函数在定义域内又单调性吗? 因为反比例函数不是连续函数,所以在整个定义域内不具单调性。反比例函数在一个指定区间内具有单调性:当k>;0时,图像分别位于第一、三象限,每一个象限内,从左往右,y随x的增大而减小;当k时,图像分别位于第二、四象限,每一个象限内,从左往右,y随x的增大而增大。k>;0时,函数在x上同为减函数、在x>;0上同为减函数;k时,函数在x上为增函数、在x>;0上同为增函数。函数的单调性(monotonicity)也叫函数的增减性,可以定性描述在一个指定区间内,函数值变化与自变量变化的关系。当函数f(x)的自变量在其定义区间内增大(或减小)时,函数值也随着增大(或减小),则称该函数为在该区间上具有单调性(单调增加或单调减少)。
一个函数具有单调性需要哪些条件? 关于X轴对称反比例只关于原点对称