椭圆型偏微分方程、抛物型偏微分方程、双曲型偏微分方程分别对应什么物理意义? 椭圆型偏微分方程:二维平面稳定场方程,如稳定浓度分布,稳定温度分布,静电场方程,无旋稳恒电流场方程,无旋稳恒流动方程等抛物型偏微分方程:一维输运方程,如扩散方程,热传导方程等双曲型偏微分方程:一维波动方程,如弦振动方程,杆振动方程,电报方程等它们是分别描述二维平面稳定场,一维输运,一维波动问题的方程
作业!帮忙啊有一坐抛物线型拱桥,桥下面在正常水位AB时宽20米,水位上升3米就达到警戒线CD,这时水面宽度为10米。(1)求抛物线的解析式(2)若洪水到来时,水?
偏微分方程的分类
如何证明热传导方程是抛物型方程 光滑性)若?呏0,则由初值问题解的表达式可看出,若u0(x,y,z)有界连 抛物型偏微分方程 抛物型偏微分方程 续,则初值问题(1)、(2)的解u(x,y,z,t)当t>;0时都是无穷次连续可微的。
1.y2=2px型抛物线中为什么y1乘y2等于-p方?请证明. 你说的是一种特殊情况:“过抛物线y2=2px的焦点(p/2,0)的直线与抛物线交于点(x2,y2)和(x1,y1),则y1*y2=-p2”设过点(p/2,0)的直线为 y=k(x-p/2)解得x=(2y+pk)2k代入解析式整理得ky2-2py-p2k=0由根和系数的关系得y1*y2=-p2显然,这个关系式只在这种情况下才成立.